下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、模块复习课MOKUAIFUXIKE第4课时导数及其应用课后篇巩固提升1.已知f(x)=x3-92x2+6x-a,若对任意实数x,f(x)m恒成立,则m的最大值为()A.3B.2C.1D.-34答案D解析f(x)=3x2-9x+6,因为对任意实数x,f(x)m恒成立,即3x2-9x+(6-m)0恒成立,所以=81-12(6-m)0,解得m-34,即m的最大值为-34,故选D.2.设函数f(x)的定义域为R,x0(x00)是f(x)的极大值点,以下结论一定正确的是()A.xR,f(x)f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点答案D
2、解析f(x)与-f(-x)的图像关于原点对称,故x0(x00)是f(x)的极大值点时,-x0是-f(-x)的极小值点,故选D.3.若函数f(x)=kx-ln x在区间(1,+)单调递增,则k的取值范围是()A.(-,-2B.(-,-1C.2,+)D.1,+)答案D解析由f(x)=k-1x,又f(x)在(1,+)上单调递增,则f(x)0在x(1,+)上恒成立,即k1x在x(1,+)上恒成立.又当x(1,+)时,01x0,因此函数f(x)在R上单调递增,且f(-2)=-530,因此函数f(x)零点的个数为1,故选B.5.若0 x1x2ln x2-ln x1B.ex2ex1x1ex2D.x2ex1x
3、1ex2答案C解析令f(x)=exx,则f(x)=xex-exx2=ex(x-1)x2.当0 x1时,f(x)0,即f(x)在(0,1)上单调递减.0 x1x21,f(x2)f(x1),即ex2x2x1ex2,故选C.6.曲线y=ln x-2x在x=1处的切线的倾斜角为,则sin+2=.答案1010解析y=1x+2x2,y|x=1=3,则tan =300.(1)若曲线y=f(x)在x=2处的切线与直线x+e2y-1=0垂直,求实数a的值;(2)讨论f(x)的单调性.解f(x)=exax2+(2a-2)x(a0).(1)由题意得f(2)-1e2=-1,解得a=58.(2)令f(x)=0,得x1=
4、0,x2=2-2aa.当0a1时,f(x)的增区间为-,2-2aa,(0,+),减区间为2-2aa,0.9.已知函数f(x)=aex-ln x-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a1e时,f(x)0.解(1)f(x)的定义域为(0,+),f(x)=aex-1x.由题设知,f(2)=0,所以a=12e2.从而f(x)=12e2ex-ln x-1,f(x)=12e2ex-1x.当0 x2时,f(x)2时,f(x)0.所以f(x)在(0,2)上是减少的,在(2,+)上是增加的.(2)当a1e时,f(x)exe-ln x-1.设g(x)=exe-ln x
5、-1,则g(x)=exe1x.当0 x1时,g(x)1时,g(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)g(1)=0.因此,当a1e时,f(x)0.10.设函数f(x)=ax2-(3a+1)x+3a+2ex.(1)若曲线y=f(x)在点(2,f(2)处的切线斜率为0,求a;(2)若f(x)在x=1处取得极小值,求a的取值范围.解(1)因为f(x)=ax2-(3a+1)x+3a+2ex,所以f(x)=ax2-(a+1)x+1ex.所以f(2)=(2a-1)e2.由题设知f(2)=0,即(2a-1)e2=0,解得a=12.(2)由(1)得f(x)=(ax-1)(x-1)ex.当a
6、=0时,令f(x)=0,得x=1.f(x),f(x)随x的变化情况如下表:x(-,1)1(1,+)f(x)+0-f(x)极大值f(x)在x=1处取得极大值,不合题意.当a0时,令f(x)=0,得x1=1a,x2=1.当x1=x2,即a=1时,f(x)=(x-1)2ex0,f(x)在R上是增加的,f(x)无极值,不合题意.当x1x2,即0a1时,f(x),f(x)随x的变化情况如下表:x(-,1)11,1a1a1a,+f(x)+0-0+f(x)极大值极小值f(x)在x=1处取得极大值,不合题意.当x11时,f(x),f(x)随x的变化情况如下表:x-,1a1a1a,11(1,+)f(x)+0-0+f(x)极大值极小值f(x)在x=1处取得极小值,即a1满足题意.当a0时,令f(x)=0,得x1=1a,x2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国童话课件教学课件
- 眉毛设计课件教学课件
- 2024大型港口码头排水合同
- 2024年度技术转让合同:技术资料交付与技术支持期限
- 2024定制家具合同范本
- 2024义齿加工商与牙科诊所之间的定制金属义齿合同
- 2024岗位聘用合同不续签岗位聘用合同
- 2024年度餐厅食材供应商采购合同
- 骨科课件介绍教学课件
- 2024年婚礼车辆租赁特别合同
- 《巨人的花园》的课文原文
- 林则徐课件完整版
- 人体发育学课件
- 《农村推行“四议两公开”工作法实施细则》
- 监理规范(新版)
- LY/T 2651-2016退化森林生态系统恢复与重建技术规程
- GB 6675.3-2014玩具安全第3部分:易燃性能
- 黑布林英语阅读 A test for Jess公开课课件
- 北师大版九年级数学上册 6.2反比例函数的图像与性质教学课件 (共19张PPT)
- 2023年12月大学英语六级真题及答案解析(全三套)
- 习作我最喜欢的玩具说课稿
评论
0/150
提交评论