【志鸿全优设计】2013-2014学年高中数学 第二章2.3 函数的应用(Ⅰ)讲解与例题 新人教B版_第1页
【志鸿全优设计】2013-2014学年高中数学 第二章2.3 函数的应用(Ⅰ)讲解与例题 新人教B版_第2页
【志鸿全优设计】2013-2014学年高中数学 第二章2.3 函数的应用(Ⅰ)讲解与例题 新人教B版_第3页
【志鸿全优设计】2013-2014学年高中数学 第二章2.3 函数的应用(Ⅰ)讲解与例题 新人教B版_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 word2.3 函数的应用()1直线型的函数模型我们学过的正比例函数、一次函数等都是直线型的,它们在每个区间的变化率都一样解题时常设为:常数函数型:yC(CR,C 为常数),正比例型:ykx(k0),一次函数型:ykxb(k0)当k0 时后两者都是增长型函数,k的值越大增速越快如果一个问题中有两个变量,且这两个变量之间存在一次函数关系,则可以用一次函数模型来解决【例 1】据调查,某自行车存车处在某星期日的存车量为 2 000 辆次,其中变速车存车费是每辆一次 0.8 元,普通车存车费是每辆一次 0.5 元若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是(Ay0.3x800

2、(0 x2 000)By0.3x1 600(0 x2 000)Cy0.3x800(0 x2 000)Dy0.3x1 600(0 x2 000)解析: 由题意可知总收入 y(元)关于 x(辆次)的函数关系式为 y0.5x(2 000 x)0.80.3x1 600,0 x2 000.答案:D2二次函数模型的建立投物、射击、喷泉、灌溉等相应物体运动的轨迹有某种规律,或者变量的变化具有二次函数关系时,可以通过直角坐标系由实际问题建立抛物线的数学模型,利用图象的性质解答【例 2】某工厂的大门是一抛物线型水泥建筑物,大门的地面宽度为 8 m,两侧距地面3 m 高处各有一个壁灯,两壁灯之间的水平距离为 6

3、m,如图所示,则厂门的高为(水泥建筑物厚度忽略不计,精确到 0.1 m)()A6.9 mC7.1 mB7.0 mD6.8 m解析:可建立坐标系,设出抛物线的解析式为ya(x216)(a0)又点(3,3)在抛物3348线上,3a(916)a= y= (x 16)y= 6.92令x0,得.777答案:A3分段函数模型的建立有些实际问题,在事物的某个阶段对应的变化规律不尽相同,此时我们可以选择利用分段函数模型来刻画它,由于分段函数在不同的区间中具有不同的解析式,因此分段函数在研究条件变化的实际问题中,或者在某一特定条件下的实际问题中具有广泛的应用【例 3】已知 A,B 两地相距 150 km.某人开

4、汽车以每小时 60 km 的速度从 A地到达 B地,在B地停留 1 h 后再以每小时 50 km 的速度返回A地把汽车离开A地的距离x表示为时间t的函数表达式是(Ax60t)Bx60t50t1 / 4 word60t,0 t 2.5,150 50t,2.5 t 3.560t, 0 t 2.5,2.5 3.5,C x=D x= 150,t150 50(t 3.5), 3.5 6.5t解析:如图,汽车离开A地的距离x(km)与时间t(h)之间的关系式是60t,0 t 2.5,x=150,2.5 3.5,t150 50(t 3.5), 3.5 6.5.t答案:D析规律 对分段函数模型的理解在现实生活

5、中有很多问题都是用分段函数表示的,分段函数每一段自变量变化所遵循的规律不同在应用时,可先将其当做几个问题,将各段的变化规律分别找出来,再将其合到一起还要注意各段变量的 X 围,特别是端点值4一次函数模型的应用在实际生活中,普遍存在着最优化问题最佳投资,最小成本等,这些常常可归结为函数的最值问题对于与一次函数有关的最值问题通常借助于一次函数的单调性来处理例如:某电脑公司在甲、乙两地各有一个分公司,甲分公司现有电脑 6 台,乙分公司有同一型号的电脑 12 台现A地某单位向该公司购买该型号的电脑 10 台,B地某单位向该公司购买该型号的电脑 8 台已知甲地运往A,B两地每台电脑的运费分别是 40 元

6、和 30 元,乙地运往A,B两地每台电脑的运费分别是 80 元和 50 元(1)设甲地调运x台至B地,该公司运往A和B两地的总运费为y元,求y关于x的函数关系式;(2)若总运费不超过 1 000 元,问能有几种调运方案?解:(1)设甲地调运x台到B地,则剩下(6x)台电脑调运到A地;乙地应调运(8x)台电脑至B地,运往A地 10(6x)(x4)台电脑(0 x6,xN),则总运费y30 x40(6x)50(8x)80(x4)20 x960,y20 x960(xN,且 0 x6)(2)若使y1 000,即 20 x9601 000,得x2.又 0 x6,xN,0 x2,xN.x0,1,2,即能有

7、3 种调运方案【例 41】某市原来民用电价为 0.52 元/kWh.换装分时电表后,峰时段(早上八点到晚上九点)的电价为 0.55 元/kWh,谷时段(晚上九点到次日早上八点)的电价为 0.35 元/kWh.对于一个平均每月用电量为 200 kWh 的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为多少kWh?分析:先求出原来用电的费用,再设出峰时段的用电量建立不等式求解解:原来电费y0.52200104(元)1设峰时段用电量为xkWh,电费为y,谷时段用电量为(200 x) kWh.则yx0.552 / 4 word(200 x)0.35(110%)y,1

8、即 0.55x700.35x93.6,则 0.2x23.6.所以x118,即这个家庭每月在峰时段的平均用电量至多为 118 kWh.【例 42】一家报刊推销员从报社买进报纸的价格是每份0.20 元,卖出的价格是每份0.30 元,卖不完的还可以以每份 0.08 元的价格退回报社在一个月(以 30 天计算)内有 20天每天可卖出 400 份,其余 10 天每天只能卖出 250 份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?分析:本题所给条件较多,数量关系比较复杂,可以列表分析设每天从报社买进 x份(250 x400,xN )数量/份

9、30 x20 x1025010(x250)价格/元0.20金额/元6x6x7500.8x200买进卖出退回0.300.08解:设每天从报社买进x份时,每月获利润为y元,则y(6x750)(0.8x200)6x0.8x550(250 x400,xN )y在x250,400上是一次函数,当x400 时,y取得最大值 870,即每天从报社买进 400 份时,每月获得的利润最大,最大利润为 870 元5二次函数模型的应用在实际生活中,有很多最优化问题可以通过建立二次函数模型,并借助于二次函数的图象和性质加以解决,其解题的关键是列出二次函数解析式,转化为求二次函数的最值问题例如:某桶装水经营部每天的房租

10、、人员工资等固定成本为 200 元,每桶水的进价是 5 元销售单价与日均销售量的关系如下表所示:销售单价/元6789101112日均销售量/桶480440400360320280240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?根据题表,销售单价每增加 1 元,日均销售量就减少 40 桶设在进价基础上增加x元后,日均销售利润为 y 元,而在此情况下的日均销售量就为: 48040(x1)52040 x(桶)由于x0,且 52040 x0,即 0 x13,于是可得y(52040 x)x20040 x520 x20040(x6.5) 1 490(0 x13)易知,当x6.5 时,y有

11、最大值所22以,只需将销售单价定为 11.5 元,就可获得最大的利润,最大利润为 1 490 元【例 5】某军工企业生产一种精密电子仪器的固定成本为 20 000 元,每生产一台仪器需增加投入 100 元,已知总收益满足函数:1400 x x2,0 x 400, R x = 280000, x 400,其中x是仪器的月产量(1)将利润表示为月产量的函数(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益总成本利润)分析:(1)由于总收益总成本利润,则利润总收益总成本,总收益是R(x),总成本固定成本可变成本20 000100 x,因此利润R(x)(20 000100 x);(2)由于R(x)是分段函数,则利润关于月产量也是分段函数,求出各“段”上的最大值,在最大值中取最大的一个值就是最大利润解:(1)设月产量为x台,则总成本为 20 000100 x,从而利润3 / 4 word1 x2 300 x 20000,0 x 400,f (x)= 260000 100 x, x 400.1(2)当 0 x400 时,f(x) (x300)225 000,所以当x300 时,有最大值 2520

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论