新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项专项施工方案_第1页
新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项专项施工方案_第2页
新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项专项施工方案_第3页
新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项专项施工方案_第4页
新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项专项施工方案_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项 施工方案 中铁十五局集团广深港客运专线ZH-4标项目部2013年10月新建铁路广深港客运专线福田站及相关工程深港隧道盾构段深港隧道盾构始发专项 施工方案 复核: 中铁十五局集团广深港客运专线ZH-4标项目部2013年10月目 录 TOC o 1-4 h z u HYPERLINK l _Toc374231672 1编制原则 PAGEREF _Toc374231672 h 5 HYPERLINK l _Toc374231673 2.依据 PAGEREF _Toc374231673 h 5 HYPERLINK l _Toc3

2、74231674 3.工程概况 PAGEREF _Toc374231674 h 5 HYPERLINK l _Toc374231675 工程范围和建设规模 PAGEREF _Toc374231675 h 5 HYPERLINK l _Toc374231676 工程地质 PAGEREF _Toc374231676 h 6 HYPERLINK l _Toc374231677 水文地质 PAGEREF _Toc374231677 h 7 HYPERLINK l _Toc374231678 4.盾构始发条件 PAGEREF _Toc374231678 h 7 HYPERLINK l _Toc37423

3、1679 5.盾构始发工艺流程及分体始发 PAGEREF _Toc374231679 h 7 HYPERLINK l _Toc374231680 5.1 盾构始发工艺流程 PAGEREF _Toc374231680 h 7 HYPERLINK l _Toc374231681 分体始发简述 PAGEREF _Toc374231681 h 8 HYPERLINK l _Toc374231682 6.盾构始发关键措施 PAGEREF _Toc374231682 h 13 HYPERLINK l _Toc374231683 始发洞门 PAGEREF _Toc374231683 h 13 HYPERLI

4、NK l _Toc374231684 6.1.2 预埋钢环加工的技术要求 PAGEREF _Toc374231684 h 14 HYPERLINK l _Toc374231685 预埋钢环安装 PAGEREF _Toc374231685 h 14 HYPERLINK l _Toc374231686 洞门钢环安装 PAGEREF _Toc374231686 h 14 HYPERLINK l _Toc374231687 洞门密封措施及控制要点 PAGEREF _Toc374231687 h 15 HYPERLINK l _Toc374231688 洞内砼导台浇注、导轨安装 PAGEREF _Toc

5、374231688 h 15 HYPERLINK l _Toc374231689 6.3 洞口段工艺弧板及后配套行走轨道基座的设置 PAGEREF _Toc374231689 h 16 HYPERLINK l _Toc374231690 分体始发期间管片砂浆等物料运输 PAGEREF _Toc374231690 h 16 HYPERLINK l _Toc374231691 物料运输方式 PAGEREF _Toc374231691 h 16 HYPERLINK l _Toc374231692 轨道布设形式 PAGEREF _Toc374231692 h 17 HYPERLINK l _Toc37

6、4231693 反力架安装 PAGEREF _Toc374231693 h 17 HYPERLINK l _Toc374231694 反力架中心里程的确定 PAGEREF _Toc374231694 h 17 HYPERLINK l _Toc374231695 反力架的掩藏与固定以及后期安装 PAGEREF _Toc374231695 h 18 HYPERLINK l _Toc374231696 6.6 负环管片拼装 PAGEREF _Toc374231696 h 20 HYPERLINK l _Toc374231697 6.6.1 负环管片的拼装 PAGEREF _Toc374231697

7、h 20 HYPERLINK l _Toc374231698 6.6.2 负环管片的固定 PAGEREF _Toc374231698 h 20 HYPERLINK l _Toc374231699 皇岗工作井井底工艺底板浇筑及始发托架安装 PAGEREF _Toc374231699 h 20 HYPERLINK l _Toc374231700 始发掘进 PAGEREF _Toc374231700 h 22 HYPERLINK l _Toc374231701 盾构掘进 PAGEREF _Toc374231701 h 22 HYPERLINK l _Toc374231702 盾构掘进主要施工参数设定

8、 PAGEREF _Toc374231702 h 23 HYPERLINK l _Toc374231703 切口水压设定 PAGEREF _Toc374231703 h 23 HYPERLINK l _Toc374231704 掘进速度 PAGEREF _Toc374231704 h 23 HYPERLINK l _Toc374231705 掘削量的控制 PAGEREF _Toc374231705 h 23 HYPERLINK l _Toc374231706 盾尾油脂压注 PAGEREF _Toc374231706 h 24 HYPERLINK l _Toc374231707 盾构掘进姿态控制

9、 PAGEREF _Toc374231707 h 24 HYPERLINK l _Toc374231708 6.8.4.1 盾构掘进方向控制 PAGEREF _Toc374231708 h 24 HYPERLINK l _Toc374231709 盾构掘进姿态的调整与纠偏 PAGEREF _Toc374231709 h 25 HYPERLINK l _Toc374231710 方向控制及纠偏注意事项 PAGEREF _Toc374231710 h 25 HYPERLINK l _Toc374231711 泥浆管理 PAGEREF _Toc374231711 h 26 HYPERLINK l _

10、Toc374231712 泥浆循环系统管理 PAGEREF _Toc374231712 h 26 HYPERLINK l _Toc374231713 泥水压力管理 PAGEREF _Toc374231713 h 29 HYPERLINK l _Toc374231714 (1)泥水压力设定 PAGEREF _Toc374231714 h 29 HYPERLINK l _Toc374231715 (4)泥水性能管理 PAGEREF _Toc374231715 h 29 HYPERLINK l _Toc374231716 管片拼装 PAGEREF _Toc374231716 h 30 HYPERLI

11、NK l _Toc374231717 管片选型 PAGEREF _Toc374231717 h 31 HYPERLINK l _Toc374231718 管片拼装的方法 PAGEREF _Toc374231718 h 31 HYPERLINK l _Toc374231719 管片拼装的质量保证措施 PAGEREF _Toc374231719 h 32 HYPERLINK l _Toc374231720 同步注浆及壁后二次注浆 PAGEREF _Toc374231720 h 32 HYPERLINK l _Toc374231721 同步注浆 PAGEREF _Toc374231721 h 32

12、HYPERLINK l _Toc374231722 (2)同步注浆技术参数 PAGEREF _Toc374231722 h 34 HYPERLINK l _Toc374231723 (3)同步注浆方法、工艺与设备 PAGEREF _Toc374231723 h 34 HYPERLINK l _Toc374231724 (5)注浆效果检查 PAGEREF _Toc374231724 h 35 HYPERLINK l _Toc374231725 同步注浆 PAGEREF _Toc374231725 h 35 HYPERLINK l _Toc374231726 箱涵拼装 PAGEREF _Toc37

13、4231726 h 35 HYPERLINK l _Toc374231727 带压作业 PAGEREF _Toc374231727 h 36 HYPERLINK l _Toc374231728 进出密封仓的程序 PAGEREF _Toc374231728 h 36 HYPERLINK l _Toc374231729 安全技术措施 PAGEREF _Toc374231729 h 37 HYPERLINK l _Toc374231730 隧道防水施工措施 PAGEREF _Toc374231730 h 37 HYPERLINK l _Toc374231731 导向技术和地面监测 PAGEREF _

14、Toc374231731 h 39 HYPERLINK l _Toc374231732 导向技术 PAGEREF _Toc374231732 h 39 HYPERLINK l _Toc374231733 地面监测 PAGEREF _Toc374231733 h 40 HYPERLINK l _Toc374231734 施工测量与监测的质量保证措施 PAGEREF _Toc374231734 h 44 HYPERLINK l _Toc374231735 7.后期S550与S623/S624井底空间的利用规划 PAGEREF _Toc374231735 h 45 HYPERLINK l _Toc3

15、74231736 8.盾构始发施工风险及应对措施 PAGEREF _Toc374231736 h 46 HYPERLINK l _Toc374231737 施工风险 PAGEREF _Toc374231737 h 46 HYPERLINK l _Toc374231738 8.2 风险应对措施 PAGEREF _Toc374231738 h 47 HYPERLINK l _Toc374231739 9. 现场突发事件应急措施及应急预案 PAGEREF _Toc374231739 h 48 HYPERLINK l _Toc374231740 9.1 突发事件紧急救援组织机构与管理职责 PAGERE

16、F _Toc374231740 h 48 HYPERLINK l _Toc374231741 救援措施 PAGEREF _Toc374231741 h 51 HYPERLINK l _Toc374231742 9.3 应急救援预案 PAGEREF _Toc374231742 h 54 HYPERLINK l _Toc374231743 9.3.1 火灾事故应急预案 PAGEREF _Toc374231743 h 54 HYPERLINK l _Toc374231744 9.3.2 物体打击及高空坠落事故应急预案 PAGEREF _Toc374231744 h 55 HYPERLINK l _T

17、oc374231745 9.3.3 触电事故应急预案 PAGEREF _Toc374231745 h 55 HYPERLINK l _Toc374231746 9.4 应急救援预案演习 PAGEREF _Toc374231746 h 551编制原则(1)严格遵守设计规范、施工规范和质量验收标准。(2)深港隧道始发井的工程地质、水文地质条件、埋深以及施工环境、施工条件等,从风险控制方面,选择合理、可靠的始发方法和技术,以保证工程施工顺利进行。(3)住关键线路,突出重点,合理部署,优化资源配置和施工方案,以确保盾构顺利始发,控制总的节点工期。(4)选择成熟的施工工艺和工法,以保证施工工序质量和工程

18、质量。2.依据(1)深圳地质建设工程公司广深港客运专线ZH-4标深港隧道岩土工程地质勘察报告;(2)铁四院DK113+487+607段矿山法隧道及;(3)铁四院衬砌管片结构图设计图纸;(4)铁四院深港隧道盾构衬砌圆环布置设计设计图纸;(5)德国海瑞克公司海瑞克盾构机技术描述及参数表; (6)盾构法隧道施工验收规范GB50446-2008;(7)高速铁路隧道工程施工质量验收标准TB 10753-2010。3.工程概况深港盾构隧道起点里程DK113+607,终点里程为DK112+089,隧道总长1518米。其中DK113+607DK113+487段长120米,为矿山法开挖,盾构空推段;DK113+

19、487DK112+089段长1398米,为盾构法掘进段,详见图3.1 深港隧道工况示意图。深港隧道工况示意图工程地质拟建隧道段场地内自上而下分布以下地层 人工填土层(Qml):勘察范围人工填土层主要为素填土,层序号(1)2, 褐黄色,多呈稍密状,稍湿,主要由粉质粘土堆填而成,含少量沙粒。属 = 1 * ROMAN I级松土。冲洪积层(Qal+pl):淤泥质黏土,层序号(9)3,灰黑色,饱和,软塑,粘粒为主组成,有机质含量较少,为臭味;细砂,层序号为(2)4-2,灰黄深灰色,饱和,稍密中密,成分以石英为主 ,局部含少量淤泥质。属 = 1 * ROMAN I级松土。 = 3 * GB2 坡残积层(

20、Qdl+el):层序号(3)1-1粉质粘土,肉红色,硬塑,由花岗岩风化而成,原岩结构尚可辨认,遇水易崩解,含约15%石英砾,为级硬土。 = 4 * GB2 花岗岩全风化带:层序号(8)1-1,褐红,棕红,棕黄色,除石英外,其余矿物均已风化成高岭土,岩芯呈土状或土夹砾砂状,土质坚硬,浸水易崩解,为级硬土。 = 5 * GB2 花岗岩强风化:层序号(8)1-2,肉红色,节理裂隙很发育,岩体破碎,呈块状及破碎状,锤击易碎,为级软石。 = 6 * GB2 花岗岩弱风化:层序号(8)1-3,肉红色,粗粒斑状结构,块状构造,岩质坚硬,节理裂隙发育,岩体呈块状及巨块状。为级次坚石。各土层地质参数见表3.1:

21、时代成因岩土名称地层编号天然重度粘聚力内摩擦角静止土压力系数地基系数(MP/m)渗透系数(KN/m)(kP)(度)竖向水平(m/d)Q4ml素填土(1)2181010Q4al+pl淤泥质粘土(9)3181015Q4al+pl细砂(2)4-219253Q4al+pl粉质粘土(3)1-12520645花岗岩(8)1-1193023855花岗岩(8)1-2253526201425花岗岩(8)1-3800水文地质拟建隧道场地位于深圳市南部沿海地带,北部、中部原生地貌为丘陵间谷地区,南部为海积平原,现均被人工改造。北部及中部丘陵间谷地区,地表水不发育,地下水补给来源以大气降水入渗,以及谷地周围基岩裂隙水

22、侧向补给为主,水力梯度较大,地下水量大部存贮于谷地相冲洪积的砂土层中,并沿沟谷由高向低向山前平原汇聚。场地南部海积平原,地表水较发育,地表径流密布,含水层分布广、厚度大且连续稳定,地下水与地表水的水力联系密切,互为补排关系明显。隧道埋深27m,隧道在益田路东侧,地表为共和世家小区。 4.盾构始发条件(1)17m,井深46.0m;(2)始发段纵坡:1.2%上坡;(3)盾构机空推段导轨中心间距6.817m,导轨顶面距盾构隧道中心5.65m,空推段导台高1.3m;(4)空推段管片采取底部拼装2块标准块形式,负环管片采用全环管片拼装形式,整环管片沿环向分为9块,采用6+2+1形式,管片设计采用通用楔形

23、管片,楔形量26mm;(5)盾构始发空推段的长度120m。5.盾构始发工艺流程及分体始发 5.1 盾构始发工艺流程盾构始发的主要内容包括:掌子面洞门钢环及密封安装、空推段导台导轨安装、竖井扩挖至设计标高、始发托架底座工艺底板浇筑及始发托架安装、盾体组装及刀盘吊装、反力架下井掩藏、空推(底部拼装两块管片)盾体及1号台车推进至掌子面、安装反力架、台车(2、3号台车)下井组装、拼装中间箱涵(从井口)、调试盾构机、试掘进22m后4号台车下井组装完成后正式掘进、中间箱涵两侧钢结构平台施工、负环管片拼装、始发掘进等。始发流程见图2.1。安装洞门钢环及浇注环框梁清理空推段洞内回填渣土空推段导台浇注导轨安装吊

24、装掩藏反力架浇注工艺底板、临时挡墙、安装始发托架下盾体、刀盘、盾尾盾体平移、始发托架上安装台车行走排轨盾体继续平移至1号台车前半部组装盾体1号台车平移至掌子面,拼装底部管片1号台车与盾体分离拼装反力架3号台车下井组装拼装中间箱涵调试盾构机、掘进22m后掘进 图5.1始发流程图5.2分体始发简述考虑到本项目盾构始发条件独特性,盾构始发总体采用分体始发。(1)组装盾体盾体组装与拆机程逆过程按:盾体5-盾体4-盾体6-盾体3-盾体7-盾体2-盾体8-中心回转体-盾体1下井组装。图5.2 盾体组装示意图(2)刀盘下井组装刀盘下井-刀盘法兰连接-刀盘背面的部分焊接工作图5.3 刀盘下井组装示意图(3)组

25、装管片拼装机(第一次前移盾体)结合竖井可利用的空间及拼装机尺寸,组装管片拼装机需将前中盾(含刀盘)整体向小里程平移5.34m。移动形式,采用辅助液压站和钢制传力构件靠后端挡墙提供反力。拼装机下井组装。图5.4 拼装机组装(盾体第一次平移)示意图(4)组装尾盾(盾体刀盘第二次平移)组装盾尾需将盾体(含刀盘)整体向小里程第二次平移4.2m。移动形式,采用辅助液压站和增加钢制传力构件靠后端挡墙提供反力。然后尾盾下井组装焊接。 图5.5组装尾盾(盾体刀盘第二次平移)组图(5)喂片机、1号台车前半部分、连接桥下井组装(盾体刀盘第三次平移)组装喂片机、1号台车前半部分需将盾体(含刀盘)整体向小里程第三次平

26、移12.8m。移动形式,采用辅助液压站和增加钢制传力构件靠后端挡墙提供反力。然后喂片机、1号台车前半部分(下1号台车前半部分之前需将竖井底部设钢支撑搭设后配套台车的行走轨道并延伸至北洞5.7m)连接桥下井与盾体连接装焊接。图5.6喂片机、1号台车前部分、连接桥下井组装(盾体刀盘第三次平移)组图(6)号台车后半部分下井组装(盾体刀盘第四次平移)1号台车后组装盾尾需将盾体(含刀盘)整体向小里程第四次平移8.9m。此时盾尾在北洞内距竖井13.78m。在平移之前需将洞口至盾尾的13.78m底部现浇成弧形底板(内弧面与管片內弧一致,为喂片机的运行及后期中间箱涵拼装提供条件,并将该段后配套台车轨道从井口延

27、伸至盾尾。然后平移,再将1号台车后半部分下井组装连接。图5.7 1号台车后半部分下井组装(盾体刀盘第四次平移)组图(7)将盾构机1号台车顶推至掌子面,完成分体始发从井口13.78m处具备拼装管片条件,此时拼装底部两块管片,采用类似与益田路隧道出洞空推方式将盾构机及1号台车顶推102.033m盾尾停留在反力架小里程(DK113+503.487)。然后依次下2号台车、3号台车、4号台车。3号台车下井后从井口拼装中间箱涵,空推期间的管片、混凝土运输采用电瓶车有轨运输。完成液压、电器、水管、压缩空气、进排浆管道连接后调试盾构机完成盾构机分体始发。试掘进22m后,安装4.1号台车,正式掘进。图5.8 盾

28、构机1号台车顶推至掌子面示意图6.盾构始发关键措施6.1始发洞门为了防止盾构始发掘进时泥浆、地下水从盾壳和洞门的间隙处流失,以及盾尾通过洞门后,管片外径与刀盘开挖轮廓之间同步注浆浆液的流失,在盾构始发时需安装洞门临时密封装置,本项目采用双道临时防水密封装置。每道洞门防水密封装置由帘布橡胶、沿圆周均匀布置的144块固定板、144块翻版、96块1型加劲板、48块2型加劲、以及配套的板垫片和螺栓等组成。详见图4.9 盾构始发双道临时防水洞门密封装置图。图6.1 盾构始发双道临时防水洞门密封装置图6. 预埋钢环加工的技术要求 洞门钢环板内径允许误差Da=10mm,任意点检测;环板宽度允许误差0+3mm

29、;整个平面不平整度6mm;焊缝需连续焊,不漏焊,焊缝高度为8mm,且不允许出现渗漏;翻板、螺孔要均布,相邻孔间距误差2mm;经现场试拼装,精度复合要求。 6.预埋钢环安装因始发段处于12的纵坡上,为了使洞门钢环的纵轴线和线路纵坡一致(帘布橡胶板、压板到盾体距离相等),保证洞门密封及防水效果,必须使洞门钢环所形成的环面与线路中线垂直(即与铅垂线呈04115)。因洞门钢环外径13.6m,在直径高度顶底部上形成163mm的纵向偏差值。详见图 洞门钢环安装及容许偏差示意图6洞门钢环安装图6.2洞门钢环安装及容许偏差示意图竖直公差要求:Va不得超过10mm;水平公差要求:Ha不得超过10mm;防止圆度变

30、形:内径误差不得超过10mm(任意点检测);Da=理论直径-实测直径(钢环安装后直实测直径);钢环中心(圆心):预埋钢环安装后中心偏差不得超过10mm。6.洞门密封措施及控制要点 (1)当盾构刀盘全部通过第二道密封后,然后在两道密封间利用预留注脂孔向内注油脂。 (2)注脂压力低于泥水压力0.1bar。 (3)当盾尾通过第一道密封且折叶板下翻后,进一步加注油脂,等盾尾通过一环以后开始采用钢环预埋注浆孔注浆进行封堵洞门。6.2洞内砼导台浇注、导轨安装1.0m(环纵),共计2828m,导台护面钢筋21.4t。盾构机空推时拆除82号滚刀和附近刮刀,通过刀盘在导轨上滑移前进。图6.3洞内导台、导轨示意图

31、6.3 基座的设置考虑到盾构机分体始发的四次平移、后配套行走、喂片机的行走、后期箱涵拼装需要,要在第四次平移之前对洞口5.7m长后配套行走基座和13.78m工艺弧板进行浇注和安装。作用:作为盾体再次平移之后的反力墙;作为中间箱涵拼装的平台;作为后配套台车行走轨道支撑。弧形部分分三次浇筑成型。工艺混凝土配筋方式与D型管片相同。共需浇筑C35钢筋混凝土166.3m3。重难点:1、弧形模板需精确设计,并具有滑移功能。2、弧形混凝土采用模板外振捣措施进行振捣,并能防止混凝土上浮。图 工艺底板及后配套行走基座示意图6.4分体始发期间管片砂浆等物料运输 6物料运输方式 1号台车组装完成后盾构机将具备拼装管

32、片功能,因为管片车及管片吊、旋转吊等管片转运系统暂不能利用,期间采用45t电瓶车轨道运输。轨道铺设在工艺底板上,随着盾构机前移轨道可在底部两块管片上不断延伸,将管片、砂浆等物料运输至前方。直至3号台车下井拼装后箱涵及管片运输车下井具备无轨运输条件。 图电瓶车结构示意图6轨道布设形式 根据电瓶车结构,在管片底部(弧形板)上布设单根轨枕长2.0m,宽0.2m,高0.2m轨枕,两侧底部设置与管片弧度相等的垫块。在轨枕上部预留4个螺栓孔,通过预留螺栓孔设置垫块用于固定轨道,轨道采用43轨,两条轨道中心间距为1.0m。见图轨枕设计示意图。图轨枕设计示意图6.5反力架安装6反力架中心里程的确定 原则:以福

33、田南端头井洞门结构大里程一侧为最后一环终点。则推算反力架接负环的基准钢环面里程为:DK112+090+7041.2%2=DK113+503.487,反力架厚0.7m故可得反力架大里程为DK113+504.187。 图6.7 始发反力架结构图6反力架的掩藏与固定以及后期安装 考虑到洞内安装条件,分5块组成。 掩藏:在盾构机达到之前,先将底部块沉底(扩挖槽)左右两块(中间块)底部支撑在导台上,并通过侧向锚固在二衬上。安装:盾体通过后将底部块抬升至理论高度后浇筑混凝土;拆除左右中间块支撑,与底部块栓接焊接;顶部两块靠拼装机及搭设导梁滑移至盾尾后,然后与中间块栓接、焊接。图反力架的掩藏示意图图6.9

34、顶部反力架分块钢架示意图因始发段位于1.2%的上坡,反力架竖直安放,反力架与隧道空推段扩大端洞壁存在2.813米的间隙通过斜撑将反力传递至正常段二衬上。首环负环顶部与反力架基准钢环密贴,有顶部至底部由夹角形成的间隙用钢楔块填塞,钢楔块厚度由0过渡至15.4cm。 图6.10反力架安装纵向图6.6 负环管片拼装 6 负环管片的拼装 综合各方面因素考虑,本项目设置7环负环。从便于拼装定位、便于控制首环负环管片姿态、以及后配套台车的行走轨道考虑,-7环(首环负环)管片封顶块定于23号油缸位置。 6 负环管片的固定 底部管片通过管片预埋钢板和导轨用钢楔块填充并焊接; 在负环管片外弧面(导轨以上部分)预

35、埋钢板,用型钢将负环纵向连接成整体,增加负环管片整体性; 在负环管片拼装完成后及时通过管片预留注浆孔在管片底部用混凝土填充。图6.11负环管片拼装排版示意图(预埋钢板示意)皇岗工作井井底工艺底板浇筑及始发托架安装 考虑大盾构的组装期间深港隧道623、624能降效施工,S550组装占用皇岗工作井北侧17m范围,将竖井底部进行扩挖至工艺底板底部标高,浇筑挡墙和工艺底板混凝土并在工艺底板上预埋钢板,安装盾体组装钢托架。 图6.12竖井底扩挖示意图图6.13 始发托架安装示意图盾构掘进作业工作流程见下图 掘进作业循环流程图开始设定管理基准开挖掘进同步注浆是否达到掘进循环进尺管片拼装是管片箱涵运输车出洞

36、管片、箱涵选型开挖管片箱涵运输车进洞是延伸管线(轨道)否否下一循环为了满足合同工期要求,采用连续生产的施工组织原则,每周七个工作日。盾构作业循环采用2+1班制,即每天2个班掘进,1个班维修保养。掘进班每天工作12小时,保养班每天强制保养4小时,其余时间为跟机保养。按本计划每天掘进环数为4环。表6.1 盾构掘进各工序循环时间表(每一环)序号工序名称工序说明作业时间(min)备 注1施工准备测量、资料反馈102盾构掘进2003管片安装就位、固定、整圆604进料运输(单程)管片及注浆材料运输30理论每环循环时间300注:表中进料运输按照最远距离的3/4考虑,机车速度为9Km/h。盾构掘进主要施工参数

37、设定切口水压设定在本工程中根据地质资料,针对不同的土层和地下水位条件进行计算,并根据计算数据在掘进过程中设定切口水压。切口水压上限值:P上=P1+P2+P3=wh+KO(-w)h+(H-h)+20P1:地下水压力(kPa); P2:静止土压力(kPa); P3:变动土压力,一般取20kPa;w:水的容重(kg/m3); h:地下水位的隧道埋深(算至隧道中心)(m);KO:静止土压力系数,本次施工取0.85;:土的容重(kg/m3) H:隧道埋深(h) 切口水压下限值:P下= P1+P2+P3 =wh+Ka(-w)h+(H-h)-2CuKa+20P2:主动土压力(kPa);Ka:主动土压力系数,

38、本次施工取0.45;Cu:土的凝聚力(kPa)。 在旁通过程中,由于盾构机内的排泥管处于堵塞状态,故旁通时应提高排泥流量,但不能降低切口水压。掘进、旁通状态切换时的切口水压偏差值控制应为-2020kPa。掘进速度 1.盾构启动时,盾构司机必须检查千斤顶是否靠足,开始推进和结束推进时速度不宜过快。每环掘进开始时,应逐步提高掘进速度,防止启动速度过大。 2.一环掘进过程中,掘进速度应尽量保持恒定,减少波动,以保证切口水压稳定和送、排泥管的畅通。 3.推进速度的快慢必须满足每环掘进注浆量的要求,保证同步注浆系统始终处于良好工作状态。 4.在掘进过程中必须保证开挖面的稳定。正常掘进条件下,掘进速度应该

39、设定在1020mm/min;如土层抗压强度过大,可适当降低掘进速度。但是若掘进速度突然升高或降低,并且数值波动过大,则应查明原因,排除故障后方可继续推进。掘削量的控制 实际掘削量W,可根据下式计算得到: W,=rsQ1(1-1)-Q0(0-1) t/(rs-1) W,:实际掘削量(kN/ring) rs:土的比重 Q1:排泥流量(m3/min) t:掘削时间(min) 1:排泥密度(kN/m3) Q0:送泥流量(m3/min) 0:送泥密度 (kN/m3) 当发现掘削量过大时,应立即检查泥水密度、粘度和切口水压。此外,也可以利用探查装置,探查开挖面情况,在查明原因后应及时调整有关参数,确保开挖

40、面稳定。盾尾油脂压注在盾构机尾端设有盾尾密封功能装置,它由弹簧钢板和钢丝刷组成的五道密封及油脂压注设备组成。在掘进过程中,压注盾尾油脂的目的是防止泥沙、水土从已拼装成环的衬砌和盾壳间的间隙处流入盾构机内,同时减少钢丝刷与管片外弧面的摩擦,延长钢丝刷的使用寿命。盾构离站未拼装管片时,在五道钢丝刷和四道密封腔内均匀涂刷满油脂。在掘进过程中根据盾尾油脂的损失情况,采用盾构自动供脂系统及时补充盾尾油脂,以提高密封性能。盾构掘进姿态控制由于地层软硬不均、隧道曲线和坡度变化以及操作等因素的影响,盾构推进不可能完全按照设计的隧道轴线前进,而会产生一定的偏差。当这种偏差超过一定限界时就会导致隧道衬砌侵限、盾尾

41、间隙变小,使管片局部受力恶化,并造成地层损失增大而使地表沉降加大,因此在盾构施工过程中,必须采取有效的技术措施控制掘进方向,及时有效纠正掘进偏差。 盾构掘进方向控制(1)采用先进的盾构掘进测量系统辅以人工测量 本工程中盾构机采用的掘进管理系统是VMT公司研究生产的一种高精度盾构掘进测量系统,能够全天候的动态显示盾构机当前位置相对于隧道设计轴线的位置偏差,主司机可根据显示的偏差及时调整盾构机的掘进状态,使得盾构机能沿着正确的方向掘进。可较好的调整与控制盾构机掘进方向,使其始终保持在允许的偏差范围内。但由于盾构推进导向系统后视基准点的前移,必须通过人工测量进行精确定位,以保证推进方向的准确可靠。并

42、校核自动导向系统的测量数据及复核盾构机的位置、姿态,确保盾构掘进方向的准确性。(2)采用分区操作盾构机推进油缸控制盾构掘进方向在上坡进时,适当加大盾构机下部油缸的推力和速度;在下坡段掘进时,适当加大盾构机上部油缸的推力和速度;在左转弯曲线段掘进时,则适当加大盾构机右侧油缸的推力和速度;在右转弯曲线段掘进时,则适当加大盾构机左侧都有刚的推力和速度;在直线平坡段掘进时,则应尽量使所有油缸的推力和速度保持一致。在均匀的地质条件时,保持所有的油缸的推力和速度一致;在软硬不均的地层中掘进时,则应根据地层断面的分布情况,遵循硬地层一侧推进油缸的推力和速度适当加大,软地层一侧推进油缸的推力和速度适当减小的原

43、则来操作。盾构掘进姿态的调整与纠偏 在实际施工中,盾构机推进方向可能会偏离设计轴线并超过管理警戒值。在稳定地层中掘进,因地层提供的滚动阻力小,可能会产生盾体滚动偏差;在线路变坡段或急弯段掘进,有可能产生较大的偏差。应及时调整盾构机姿态、纠正偏差。(1)参照分区操作推进推进油缸来调整盾构机姿态,纠正偏差,将盾构机的方向控制调整到符合要求的范围内。(2)在急弯和变坡段,必要时可利用盾构机的超挖刀进行局部超挖来纠偏。(3)当滚动超限时,盾构机会自动报警,此时应采取盾构刀盘反转的方法纠正滚动偏差。方向控制及纠偏注意事项(1)在切换刀盘转动方向时,应保留适当的时间间隔,切换速度不宜过快,否则有可能会造成

44、管片受力状态突变,而使管片损坏。(2)根据掌子面地层情况及时调整掘进参数,调整掘进方向时,应设置警戒值和限制值。达到警戒值时就应该实行纠偏程序。(3)蛇形修正及纠偏时,应缓慢进行,如修正过程过急,蛇形反而更加明显。在直线推进的情况下,应选取盾构当前所在位置点与设计线上远方的一点作一直线,然后再以这条线为新的基准进行线形管理。在曲线推进的情况下,应使盾构当前所在位置点与远方点的连线同设计轴线相切。(4)推进油缸油压的调整不宜过快、过大,否则可能会造成管片的局部破损甚至开裂(5)正确进行管片选型,确保拼装的质量和精度,以使管片端面尽可能与计划的掘进方向垂直。(6)盾构始发、到达时的方向控制极其重要

45、,应按照始发、到达掘进的有关技术要求,做好测量定位工作。泥浆管理泥浆循环系统管理泥水加压式盾构法,是用泥水加压密闭的开挖面,不能直观目视开挖面状态及掘削状况。为此,采用综合管理,根据送排泥状态、开挖面泥水压力以及泥水处理设备等运转状况来进行推测,以便及时处理突如其来的异常情况。将盾构掘进机、送排泥循环输送和泵的状态及泥水处理设备等作为一个综合性系统进行管理。(1)通过对盾构掘进速度、泥水浓度、排泥量等有关数据的采集、分析来监视开挖面稳定状况,并通过调整泥水泥水比重、泥水压力确保开挖面的稳定。(2)加压和循环系统管理控制内容送排泥泵的起动、停止;送排泥流量、流速;旁通管路运转时的送泥管内水压;盾

46、构掘进机掘削时,为保持开挖面泥水压的送泥水压的控制等。管内沉淀临界流速的维持是采取用电磁流量仪测定实际流量,将它和预先由管径计算的沉淀临界流量的差值,通过改变泵转速进行校正,并自动控制在沉淀临界流速以上的方法。此外,对于最关键的开挖面泥水压力(包括送排泥水压力)控制,送泥泵P;是否要使用可变速泵(VS),若使用变速泵,那么在送泥管中途和返回调整槽途中就要设有自动控制阀,随着掘进、排泥及其它变化,由泥水压力仪来检测开挖面泥水压力的变动,自动演算与开挖面设定的水压差。可变速(VS)泵场合,由转速、自动控制阀自动控制开度,通过控制送入开挖面的泥水量来控制泥水压力,达到开挖面稳定。同时也能测定各泵的转

47、速、电流值以及确认排泥泵的增设时间。此外,根据上述状况还可以推测管路堵塞位置。为了保持开挖面泥水压力,阀类操作采取自动控制,由转换程序装置控制进行自动管理。在节假日以及故障等停止掘削期间的开挖面泥水压力,同样也由开挖面泥水压力仪、自动控制阀和泵的自动运转联合装置,自动进行控制。(3)泥水平衡控制泥水平衡控制的目的是使泥水加压式盾构开挖面的土体压力达到平衡,保持开挖面的稳定。在盾构施工中要使盾构开挖面压力绝对平衡是不可能的,因为受到盾构掘进速度、地层变化、掘进深度及掘进长度等多种因素干扰,必须通过监控手段去达到动态上的相对平衡,以求开挖面的稳定。泥水平衡控制对象随着盾构掘进速度的动态变化,切削进

48、入泥水仓内的泥土量与掘进速度亦成正比变化,其在泥水仓内产生的压力趋势亦呈正比变化。随着掘进距离的增长,在送泥水泵功率一定的条件下,送泥管道的增长会引起送泥水阻力的增加,使进入泥水仓的送泥水压力下降。同时排泥水泵功率一定的条件下,排泥管道增长会引起排泥水阻力的增加,使泥水仓内压力增加。掘进速度变化和送排泥管道增长是泥水仓压力变化的主要干扰源。在影响土体恶性循环的诸因素中(泥水仓压力、掘进速度和泥水密度等),泥水仓压力是影响土体稳定的主要因素。因此,泥水平衡控制的主要对象是泥水仓的压力。泥水平衡控制原理泥水平衡控制运用单回路调节器和执行机构(调节水泵转速和控制阀开度)与被控对象构成闭环路反馈,根据

49、被控参数的测量值与给定值之间的偏差,按调节规律,对执行机构进行控制,以达到泥水平衡控制之目的。在不同工况条件下,调节器的设定值、测量值、输出控制之间的关系见下表。状态 调节器名称设定值(SV)测量值(PV) 输出控制停止开挖面水压调切器开挖面水压开挖面水压阀门开度旁路开挖面水压调节器开挖面水压 开挖面水压阀门开度送泥水压凋节器送泥水压 送泥水压 送泥泵转速排泥流量调节器排泥水流量送泥水流量排泥泵转速掘进开挖面水压调切器开挖面水压开挖面水压送泥水压调节器跟踪输入送泥水压调节器送泥水压 送泥水压送泥泵转速排泥流量调节器排泥水流量排泥水流量排泥泵转速在掘进状态条件下,开挖面水压调节器根据测得的开挖面

50、水压同设定值进行比较,如果泥水仓压力大于设定值,开挖面水压调节器输出值降低,送泥泵的转速下降,进入泥水仓的送泥水量减少,使泥水仓压力降低。反之亦然。开挖面水压调节器与送泥水压调节器的输出值互为跟踪,能解决过渡过程状态转换的扰动,一旦过渡过程完成,开挖面水压调节器屏蔽跟踪信号,送泥水压调节器仅起信号传递作用。在掘进状态条件下,排泥水密度的变化将导致排泥水流量的变化。这种变化会增加开挖面水压调节器的泥水平衡控制负担。因此,由排泥水流量调节器稳定排泥水流量,起到间接控制泥水平衡的作用。当测得排泥水流量小于设定值时,排泥水流量调节器输出增加,排泥水泵转速增加,使排泥水流量增大。反之亦然。(4)泥水输送

51、控制当开挖面水压高于上限值时,暂停掘进,待延时后开启逸流阀、若逸流后开挖面水压恢复正常,则关闭逸流阀。如果开挖面水压高于极限值,则通过旁路调节。如果引起管道阻塞,则进入逆洗状态,否则调整压力设定值。当排泥水流量低于下限值时,暂停掘进,待排泥水流量正常后继续掘进。当排泥水流量低于极限值时,则通过旁路调节。如果引起管道阻塞,则进入逆洗状态,否则调整排泥水流量设定值。管道阻塞时,通过进入逆洗状态清理管道,再进行正常循环,如此反复,使管道保持畅通。泥水输送的控制通过可编程逻辑控制器对分布在地面、隧道内、盾构台车上泥水输送系统的各类水泵和阀进行控制。中央控制盘根据泥水输送监控系统主控程序要求,协调泥水输

52、送控制系统正常运行。(5)停歇时的管理在停止掘削时,泥浆循环系统继续循环35分钟,确保送浆管里的泥碴被循环出地面泥浆池,留在泥浆管里的泥浆液性能较好,不容易发生沉淀和堵塞。(6)掘削排土量的检查掘削出来的土通过排泥管排出,由仪器测定送泥水和排泥水的差,通过计算求出实际土粒子量(干砂量)。将仪器电磁流量仪和线密度仪、差压密度计、重量式密度计等安装在送泥管和排泥管途中,测量管内的流量和密度。根据土粒子比重值算出土粒子量,从排泥量和送泥量的差值上计算出土粒子量(原则上是计算每一环的掘削出土量)。从对预先的钻孔资料计算的量的差值上进行判断,了解异常情况,但两者的值未必是相同的,最终还是要对两者加以对比

53、作出推定。从以上作业可了解到开挖面的稳定、塌方、超挖以及土质变化等情况,但是由于仪器的误差、掘进速度的变化、送泥和排泥流量的变动、送排泥水比重的变动等而产生偏差,并且用钻孔调查时的刻度漂移测显示出来的可能完全不是实际土体的孔隙比、含水率、粒度组成和地层变化等情况,这就需要有相当的判断能力。为了减少这些误差,要充分注意流量计和密度仪的设置场所、仪器的性能、钻孔的位置和孔数以及土工试验场所和方法等。泥水压力管理(1)泥水压力设定在泥水加压式盾构工法中,加在开挖面上的压力,即用泥水使开挖面保持稳定的力,通常应与作用在开挖面上的土压在对抗中保持平衡,上压与开挖面上含水土体的垂直作用的重力和土的内摩擦角

54、大小有关。泥水压力的设定如下:. 压力设定图设定泥水压=土压(含水压)十气压土压(含水压)为盾构机掘进时盾构机头部2/3高度处的压力。气压的一般标准为0.10.2MPa。(2)设定压力的管理根据线路地质资料,预先设定泥水压力。(3)设定压力的修正对设定的压力值需周密地考虑对开挖面状态的适应情况,并进行推测、跟踪修正。(4)泥水性能管理通常所谓的泥水,是将分散在水中的、具有吸水后明显地呈膨润性质的粘土矿物质的悬浮液作为主要成分,并添加分散胶溶剂、有机母水胶剂、加重剂及其它调泥剂,使其成为一种可塑流体。主要材料有清水、膨润土、CMC。主要功能是用泥水来谋求开挖面稳定,在防止塌方的同时,将切削下来的

55、土形成泥水并流畅地运往地面,对刀盘、刀头等掘削设备有冷却和润滑作用。根据不同的土体,确定相应泥水比重、粘度等指标。 = 1 * GB3 比重泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。泥水比重的范围应在1.011.03 g/cm31 g/cm3,在土体自立性较好或粘土层中掘进可适当下调。上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.03 g/cm3。 = 2 * GB3 粘度从土颗粒的悬浮性要求来讲,要求泥水的粘度越高越好,考虑到泥水处理系统的自造浆能力,随着推进环数增加,泥浆越来越浓,比

56、重也呈直线上升,而比重的增加并非说明泥浆的质量越来越高,若在砂性土中施工,粘度甚至会下降,因此,泥水粘度的范围应保持在2535s。考虑到粘度的调整有一个过程,故在泥浆粘度为30s时,即可逐渐增加CMC,添加量的多少视粘度下降的趋势而定。 = 3 * GB3 含砂量泥水处理的目的是保留全部粘土颗粒,去除45m以上的砂颗粒,并且45m以下的砂粒也必须控制在一定的范围内,工作泥浆中的含砂量控制在泥水处理中,同样是一个重要指标。 = 4 * GB3 析水量和PH值析水量和PH值是泥水管理中的一项综合指标,它们在更大程度上与泥水的粘度有关,悬浮性好的泥浆就意味着析水量小,反之就大。泥水的析水量须小于5%

57、,PH值须呈碱性,降低含砂量、提高泥浆的粘度、在调整槽中添加石碱,是保证析水量合格的主要手段。在砂性、粉砂性土中掘进时,由于工作泥浆不断地被劣化,就需要不断地调整泥水的各项参数,添加粘土、膨润土、CMC;在粘土、淤泥质粘土中掘进时,由于粘性颗粒不断增加,使排放的泥浆浓度越来越高,添加清水进行稀释则成为主要手段。 = 5 * GB3 泥水配比(重量比) 膨润土泥浆(1m) 膨润土CMC水50kgkg1000kg本工程工程管片初衬采用错缝拼装方式,有利于提高隧道的总体刚度,改善管片的受力状态。其拼装程序如图所示。管片止水条及衬垫粘贴管片选型、下井和运输组织管片就位管片吊机卸车、倒运管片管片安装区的

58、清理盾构掘进缩回安装位置油缸缩回安装位置油缸推进缸顶紧就位管片管片安装与连接管片环成型整圆管片环脱离盾尾的二次紧固图 管片安装程序图管片选型(1)在管片拼装前应先确定管片旋转的角度,即选择封顶块F的位置,选型必须考虑以下因素: (2)盾构机姿态与隧道轴线相对关系 (3)盾构机姿态与管片姿态的相对关系 (4)盾构机各个千斤顶行程 (5)管片外表面与盾壳内表面的四周间隙(6)管片的上、下、左、右超前量(7) 错缝拼装 (8)后配套台车轨道定位小孔的定位管片拼装的方法(1)管片拼装以满足隧道线型为前提,重点考虑管片安装后盾尾间隙要满足下一掘进循环限值,确保有足够的盾尾间隙,以防盾尾直接接触管片。(2

59、)管片拼装必须从底部开始,然后依次拼装相邻块,最后安装封顶块。(3)封顶块拼装前应对止水条进行润滑处理,拼装时先径向插入1400mm,调整位置后缓慢纵向顶推。(4)管片块拼装到位后,应及时伸出相应位置的推进油缸顶紧管片,然后方可移开管片安装机。(5)在管片环脱离盾尾后必须保证管片连接螺栓预紧力达到设计要求。管片拼装的质量保证措施(1)严格进场管片的检查,破损、裂缝的管片不用。下井吊装管片和运送管片时应注意保护管片和止水条,以免损坏。(2)止水条及衬垫粘贴前,应将管片进行彻底清洁,以确保其粘贴稳定牢固。施工现场管片堆放区应有防雨设施。粘贴止水条时应对其涂缓膨剂。(3)管片拼装前应对管片拼装区及管

60、片相接面进行清洁处理。(4)严禁非管片拼装位置的推进油缸与管片拼装位置的推进油缸同时收缩。(5)管片拼装时,必须运用管片拼装机的微调装置将待拼装的管片与已拼装管片块的内弧面纵面调整到平顺相接,以减少错台。调整时动作要平稳,避免管片碰撞破损。(6)管片拼装质量应以满足设计要求的隧道轴线偏差和有关规范要求的椭圆度及环、纵缝错台标准进行控制。同步注浆及壁后二次注浆同步注浆(1)同步注浆施工工艺流程在盾构掘进过程中,通过盾尾注浆管同时进行同步注浆。必要时,在管片脱出盾尾后,通过管片上预留的注浆孔进行多次补强注浆。注浆工艺流程见图。正常合格 不合格不正常注浆结束下一环注浆浆液拌制试验检测浆液运输设备、管

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论