版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE -. z.CMA盲均衡算法研究*宋政育081201531.盲均衡概述1.1 均衡器分类均衡是通信系统中的一项重要技术,不仅应用于模拟通信,也应用于数字通信。在数字通信中,由于信道的特性变化,会造成码间干扰。通过均衡,可以补偿信道特性的变化,减小或消除码间干扰。均衡通常在接收机完成。均衡器分为两种方式,一是频域均衡,二是时域均衡。频域均衡是使整个系统的频率传递函数满足无失真传递的条件。时域均衡是直接从时间响应出发,使整个系统的冲激响应满足无码间干扰的条件。频域均衡的条件是比拟严格的,而满足奈奎斯特整形定理的要求,即仅仅在判决点满足无码间干扰的条件相对宽松一些。所以在数字通信中,一般采用
2、时域均衡。时域均衡器分为两大类,一是线性均衡器,二是非线性均衡器。图1.1表示了均衡器的分类框图。图1.1 均衡器的构造分类1.2 盲均衡技术尽管理论上存在理想的基带传输特性,但是在实际应用由于中无线信道的时变特性,在抽样时刻上总是存在一定的码间干扰,从而导致系统性能的下降,误码率显著增大。理论和实践都说明,在基带系统中插入一种滤波器能减少码间干扰的影响。这种起补偿作用的滤波器统称为均衡器。在实际应用中有许多问题不能用固定系数的均衡器解决,因为我们没有充足的信息去设计固定系数的数字滤波器,或设计规则会在滤波器正常运行时改变。绝大多数这些应用都可以用特殊的智能滤波器,即常说的自适应滤波器来成功解
3、决。自适应滤波器显著特征是:它在工作过程中不需要用户的干预就能改变响应,进而改善性能。系数可变的自适应均衡器可以分为两类:基于导频的估计方法和盲估计方法。第一种方法利用数据序列中的数据可以是离散的或连续的得到导频位置处的信道响应,然后利用有关差算法得到整个频域信道的响应,这种方法简单,运算量小,但需要发送的导频信息,降低了系统效率。而盲估计和跟踪方法利用了接收数据的统计特性来实现信道的估计和跟踪,如利用子空间分解算法等,相对于基于导频的估计和跟踪算法,盲算法提高了系统效率,但极增加了运算量。盲均衡是一种在信道畸变相当严重的条件下,不借助训练序列,仅根据承受到的信号序列本身对信道进展自适应均衡的
4、方法。与普通的均衡器相比,盲均衡具有收敛域大,应用围广的特点。1.3 盲均衡算法与分类 盲均衡概述含有盲均衡功能的接收系统如下图。其道包括收发局部的滤波器以及空间传播媒体,其时变冲激响应序列未知。信道输出信号形式为:r(n)s(n)信道hn盲均衡器为了保证无噪信道输出方差不变,通常采用自动增益控制技术,使得。令为一个理想逆滤波器的冲激响应序列,他与信道冲激响应序列之间满足逆关系,即这样,在发射信号通过信道传输后,首先接入这个逆滤波器,其输出为先不考虑噪声因素:。在实际应用中,理想逆滤波器通常采用长度为2L+1的有限抽头,这样滤波器输出为这就是众所周知的用横向滤波器实现逆滤波器的形式。由于逆滤波
5、器截断,必然会带来剩余码间干扰,进一步分析可知:,其中称为卷积噪声,也就是剩余码间干扰。以此作为误差信号去调节逆滤波器就得到盲均衡器。 盲均衡算法分类考虑一个有2N+1抽头的线性均衡器如下列图所示。其中,式中m和n取整数,为第NT时刻均衡器的输出参数,为第m次高速后第i个抽头的增益系数,T为发送端信号的符号周期。算法的一般形式为,这里是迭代步长,f()是起误差控制的函数,其选取关系到算法的收敛性。图1.2 整数抽头均衡盲均衡器Sato提出的盲均衡算法表达式为,其中;Godard给出的盲均衡算法表达式为,其中;Serra给出的盲均衡算法表达式为,其中;Benvenisete-Goursat提出的
6、均衡算法表达式为,其中;以上各种算法的盲均衡器总的要快速跟踪信道的变化,快速收敛,且收敛以后的剩余误差要小。2. CMA算法2.1 CMA算法的原理利用自适应滤波算法,合理的人工制造一个期望响应来代替缺失的期望响应。其实,人工制造一个期望响应的思想,在非盲均衡器的应用中已经被采用,即训练序列,但训练序列只在初始系统训练阶段存在,一旦训练完毕,训练序列不再存在,通信系统将传输用户的有用数据,期望响应也不再存在,自适应滤波器切换成一个固定系数滤波器,对于平稳信道来讲这样做是可以承受的,但对于性能不稳定的信道,接收机性能将会显著下降。对原理加以改良,在训练序列传输完毕后,通过人造一个期望响应,使得自
7、适应滤波过程能够继续,以保证自适应均衡器跟踪信道的变换。人造期望响应的方法是,在训练完毕后,将均衡器输出送入判决器,判决器的输出作为期望响应,与滤波器输出相减构成误差量用于调整自适应均衡器系数。由于判决器运算是一种非线性运算,因此训练完毕后,利用人造期望响应的自适应均衡算法不再是线性自适应滤波器,而是非线性自适应滤波器。下列图表示了CMA盲均衡算法的框图。图2.1 CMA盲均衡算法框图在通信系统中,角度调制是常用的调制形式,它包括频率调制FM和相位调制PM,这些调制信号满足包络是常数的性质,利用这个性质,构造一类盲自适应均衡算法,即CMA算法。传输信号满足恒模性,即,因为接收到的信号经过信道引
8、起了畸变并且混入了干扰噪声,已不满足恒模性,当接收到的信号通过均衡器后,如果性能得到改善,误差函数会下降,理想的均衡器是误差函数下降到零。定义使(y(n)最小,利用LMS算法的根本思路,可以导出CAM算法如下 对于复信号和复系统,权更新算法为2.2 CMA算法的MATLAB程序实现先以4QAM调制为例。第一步:初始化。取1000个数据,调制方式为4QAM,从星座可知,其模为常数,步长为0.02,信道冲激响应随机生成,为复信道。第二步:生成信道噪声。第三步:通过CMA均衡器处理。第四步:计算SER。程序如下:% QAM的CMA算法实现% 初始化T=1000; dB_ma*=30;dB_inter
9、=3;N=5; Lh=5; Ap=4; h=randn(Ap,Lh+1)+sqrt(-1)*randn(Ap,Lh+1); for i=1:Ap, h(i,:)=h(i,:)/norm(h(i,:); end s=round(rand(1,T)*2-1; s=s+sqrt(-1)*(round(rand(1,T)*2-1);SER=zeros(1,dB_ma*);for dB=0:dB_inter:dB_ma*% 产生信道噪声*=zeros(Ap,T); SNR=zeros(1,Ap);for i=1:Ap *(i,:)=filter(h(i,:),1,s); vn=randn(1,T)+sq
10、rt(-1)*randn(1,T); vn=vn/norm(vn)*10(-dB/20)*norm(*(i,:); SNR(i)=20*log10(norm(*(i,:)/norm(vn); *(i,:)=*(i,:)+vn; end% CMA盲均衡器Lp=T-N; *=zeros(N+1)*Ap,Lp); for i=1:Lp for j=1:Ap *(j-1)*(N+1)+1:j*(N+1),i)=*(j, i+N:-1:i).; endende=zeros(1,Lp); f=zeros(N+1)*Ap,1); f(N*Ap/2+3)=1; R2=2; mu=0.001; for i=1:
11、Lp e(i)=abs(f*(:,i)2-R2; f=f-mu*2*e(i)*(:,i)*(:,i)*f; end sb=f*; % 计算SERH=zeros(N+1)*Ap,N+Lh+1); temp=0;for j=1:Ap for i=1:N+1 temp=temp+1; H(temp,i:i+Lh)=h(j,:); end endfh=f*H; temp=0;temp=find(abs(fh)=ma*(abs(fh); sb1=zeros(1,size(sb);sb1=sb./(fh(temp); sb1=sign(real(sb1)+sqrt(-1)*sign(imag(sb1);
12、start=N+1-temp; sb2=sb1(10:length(sb1)-s(start+10:start+length(sb1); SER(dB+1)=length(find(sb2=0)/length(sb2) ; end % 画图if 1 figure(1); subplot(221), plot(s,o); grid,title(Transmitted symbols); *label(Real),ylabel(Image) a*is(-2 2 -2 2) subplot(222), plot(*,o); grid, title(Received samples); *label(
13、Real), ylabel(Image) subplot(223), plot(sb,o); grid, title(Equalized symbols), *label(Real), ylabel(Image) figure(2); plot(abs(e); grid, title(Convergence), *label(n), ylabel(Error e(n)endfigure(3);i=0:dB_inter:dB_ma*;semilogy(i,SER(i+1),gp-);grid;legend(SGDCMA);ylabel(误码率);*label(信噪比dB); figure(4);
14、 subplot(221), h=reshape(h,1,(Ap*(Lh+1); ii=1:(N+1)*Ap; stem(ii,h(ii); grid,title(channel impluse response); subplot(222), ii=1:(N+1)*Ap; stem(ii,f(ii); grid,title(equalization coefficience );生成的星座比照图如下:从这比照图可以看出,当采用CMA盲均衡以后,盲均衡输出会聚到四个星座点上,这样在判决的时候将极大提高判决准确率。该图表示了QAM经过盲均衡处理器以后的收敛曲线。2.3CMA算法和LMS算法的性能
15、比拟LMS算法是一种线性自适应滤波算法。LMS算法包括两个过程:一个是滤波过程,一个是自适应过程。在滤波过程中,自适应滤波器计算其对输入的响应,并且通过与期望响应比拟,得到估计的误差信号。在自适应过程中,系统估计误差自动调整滤波器的参数。对于FIR横向滤波器,使用最小均方误差LMS作为代价函数,在最小均方误差意义下的最正确权向量,其中。动态系统中,加权向量应该根据观测信息自适应调整,应用最广的是下降算法,即,为更新步长,为更新方向向量。根本LMS算法:又称为最陡下降法,更新方向向量为n-1次迭代代价函数的负梯度,为了简化梯度计算量,通常用估计值,其中误差信号定义为期望输出与滤波器实际输出之间的
16、误差。如果期望信号未知,也可以用代替。根据更新步长的不同又分为三种情况:1为根本LMS算法;2为归一化LMS算法;3为功率归一化LMS算法,为遗忘因子,为加权向量维数。根本LMS算法是由Windrow在60年代初提出的。时域解相关LMS算法:上述LMS算法收敛速度慢,而解相关可以显著加快收敛速度。定义和在n时刻的相关系数,更新方向向量为,更新步长,为修正因子。此法是Doherty在1997年提出的。变换域解相关LMS算法:通过对输入数据进展酉变换,在不增加计算复杂度的前提下,提高收敛速度。首先给定一个酉变换矩阵,;。下面给出程序:%psk的盲均衡分别用CMA和LMS clear allM=4;
17、 k=log2(M); n=5000; %u=0.05;u1=0.001;u2=0.0001;m=500;%h=0.05 -0.063 0.088;%-0.126; -0.25;h=1 0.3 -0.3 0.1 -0.1;L=7; mse1_av=zeros(1,n-L+1);mse2_av=mse1_av;for j=1:m a=randint(1,n,M); a1=pskmod(a,M); m1=abs(a1).4; m2=abs(a1).2; r1=mean(m1); r2=mean(m2); R2=r1/r2; %R2=sqrt(2%); s=filter(h,1,a1); snr=1
18、5; *=awgn(s,snr,measured); c1=0 0 0 1 0 0 0 ; c2=c1; y=zeros(n-L+1,2); for i=1:n-L+1 y=*(i+L-1:-1:i); z1(i)=c1*y; z2(i)=c2*y; e1=R2-(abs(z1(i)2); e2=a1(i)-z2(i); c1=c1+u1*e1*y*z1(i); c2=c2+u2*e2*y; mse1(i)=e12; %u(i)=0.2*(1-e*p(-(0.3*abs(e(i); mse2(i)=abs(e2)2; end; mse1_av=mse1_av+mse1; mse2_av=mse2_av+mse2; end;mse1_av=mse1_av/m;mse2_av=mse2_av/m;figureplot(1:n-L+1,mse1_av,r,1:n-L+1,mse2_av,b)a*is(0,5100,0 2.8);scatterplot(a1,1,0,r*);hold onscatterplot(*,1,0,g*);hold onscatt
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理咨询与课堂教学相结合的策略研究
- 2025至2031年中国复嫩模粉行业投资前景及策略咨询研究报告
- 2025年外研版高三地理上册月考试卷含答案
- 2025年上外版高三数学下册阶段测试试卷含答案
- 2025年华东师大版共同必修2物理上册阶段测试试卷含答案
- 2025年人教版六年级英语下册月考试卷含答案
- 2025至2030年中国锅盖把手数据监测研究报告
- 2025年人教A版选择性必修3地理上册月考试卷含答案
- 2025年新科版选修3物理上册阶段测试试卷含答案
- 2025年人教A版九年级物理上册阶段测试试卷含答案
- 2024年08月云南省农村信用社秋季校园招考750名工作人员笔试历年参考题库附带答案详解
- 防诈骗安全知识培训课件
- 心肺复苏课件2024
- 2024年股东股权继承转让协议3篇
- 2024-2025学年江苏省南京市高二上册期末数学检测试卷(含解析)
- 四川省名校2025届高三第二次模拟考试英语试卷含解析
- 《城镇燃气领域重大隐患判定指导手册》专题培训
- 湖南财政经济学院专升本管理学真题
- 考研有机化学重点
- 全国身份证前六位、区号、邮编-编码大全
- 《GPU体系结构》课件2
评论
0/150
提交评论