内河港口与码头间的自动化集装箱运输系统 毕业设计 外文翻译_第1页
内河港口与码头间的自动化集装箱运输系统 毕业设计 外文翻译_第2页
内河港口与码头间的自动化集装箱运输系统 毕业设计 外文翻译_第3页
内河港口与码头间的自动化集装箱运输系统 毕业设计 外文翻译_第4页
内河港口与码头间的自动化集装箱运输系统 毕业设计 外文翻译_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、内河港口与码头间的自动化集装箱运输系统摘要由于全球集装箱贸易的快速增长,每一个主要港口都处于满足预测容量需求的压力中。港口稀缺的土地在很多大都会地区使得所有通过扩展码头地区来增加容量的可能变得很困难。为提高容量和满足对集装箱存储区和码头容量快速增长的需求,最终的替代方案一直在寻求中。在这项研究中,我们提出一个新的概念“在内河港口和码头间的自动化货物运输系统”(ACTIPOT),这涉及到使用自动卡车将集装箱从一个内陆港口转移到码头。内陆港口距离码头可以几英里或更远,那里可以在分给客户或转移到码头装卸之前提供低成本的土地来存放和处理进出口集装箱。在这个报告中,我们设计分析仿真和测试了ACTIPOT

2、系统的不同组件,重点在对自动化卡车横向和纵向的控制及在码头与内陆港口间集装箱的所有作业和同步转移采用专用货车通道的整个上位机控制器。我们使用卡车队以便使整个系统的控制更容易处理和理解,从而减小死锁、阻塞和失败的可能性。仿真用于说明各子系统运行在一个令人满意的方式。规模较大的微观仿真用于验证ACTIPOT系统的整体性能。在ACTIPOT系统中,距离及其他变量的选择是根据都位于长滩地区作为内河港口的ICTF设施和码头G决定的。1. 引言近几年,全球集装箱贸易一直以每年9%的速度增长,相应地美国的增长速度约为6%。到2010年,预计将有90%的班轮运输采用集装箱。因此,每个主要的港口的集装箱预计到2

3、020年翻一倍甚至三倍。为了保持竞争力,都市地区的海洋集装箱码头必须满足存储和处理容量不断增长的需求。那些港口,例如洛杉矶/长滩,处理近三分之一的美国国外集装箱运输量,承担着满足容量不断增长的需求的巨大压力,以便保持竞争性和避免拥挤在码头和相邻的区域。一个可行的减小在码头增加存储容量的压力的方法是使用内陆港口,它将在货物进行进出口处理之前作为一个中间存储区域。这样一个内陆港口可以非常有效地自动完成所有这些任务,包括处理、调度、存储和内陆港口与集装箱码头间的转移。这样一个自动系统的重要一部分是采用自动化卡车得集装箱运输。自动化卡车在货物运输中的使用具有以下优势:自动化和一致性的集装箱装卸作业方式

4、高集装箱吞吐量连续操作:一天24小时,一年365天降低运营成本,特别是劳动力成本高度可控性和可靠性高安全标准近几年里,一些研究已经实现了在货物运输中采用自动化卡车的可行性。伊洛瓦底江三角洲在鹿特丹的港口已经运行了自动化卡车,简称自助指导车辆(AGVs),为码头运输集装箱,同时,新加坡、泰晤士、汉堡、川崎及高雄的港口也正在试验类似的系统。伊洛瓦底江三角洲在鹿特丹的港口,一个中央控制器指示所有自助指导车辆去哪接受新任务。每个自助指导车辆的载重为14吨,运行一个柴油液压传动系统可以装载40吨负荷。自助指导车辆以680公理/时的速度无噪声地移动,遵循位于地面下6.46英尺间隔的转发器的指导。Figur

5、e 1. The Delta Port Container Terminal at Rotterdam 在码头内,距离相对较短,交通相对拥挤,因此自动化卡车以低速运行。传感、控制和导航的问题比高速时更容易。但是,如果自动化卡车被要求在码头和内陆港口间运输货物,一般几英里远时,还是期望以相对高的速度运行,这将使车辆控制问题具挑战性。在荷兰运输技术的中心,1994年研究了一种集装箱运输系统,称为“Combi-Road”。每个集装箱通过一个自动化卡车装载,如图2的左边。卡车是电动的,沿着专门设计的通道行驶。这个计划是为了建立一个大型的能提供集装箱不拥堵的最大距离为200千米最高速度在50千米/小时的

6、运输系统。一个原型车在一个200米长的测试通道已经被成功测试。最近,在卡车自动化地区很多研究工作,自动化公路系统、智能交通系统已经完成。例如戴姆勒-克莱斯勒公司已经为重型车辆开发的车辆自动跟随控制系统,如“电子牵引杆”系统。其他的包括Eaton-VORAD船舶避碰决策系统允许卡车当在交通流维护安全时间进展时执行自动车辆跟随。横向控制器如迅速适应横向位置处理器用于沿着蜿蜒的道路驾驶公共汽车/卡车和换车道来超过慢车。在美国,大量的研究成果正在研究部署在高速公路上的自动化卡车,作为车队或自主车辆操作混合交通。合作伙伴为先进交通和高速公路关于卡车的自动化已经有了一些研究成果。大量不同的纵向控制器,被用

7、线性或非线性间距政策提出和测试过,允许车辆在纵向方向上自动跟随。控制策略能满足个体稳定性和一车队卡车的稳定性已被证明。在重型卡车的横向控制的案例中,经典环形、H环形和滑模结构控制方法已通过实验测试和证明。尽管卡车自动化地区过去和最近的各项活动,目前仍然没有采用较高速度的完全自动化卡车系统。纵向和横向发展的控制规则非常稳定,充分利用现有的传感器和通信技术仍处于初级阶段。在这个项目中,我们研究一个在内陆港口和码头间的自动货物运输系统,它采用完全自动化得卡车在内陆港口和码头间运输货物。自从我们的方法集中部署这可能会导致自动化卡车在一个受控而人类安全不成问题的环境中的发展上,这可能会导致第一次实现全自

8、动化卡车的高速行驶。我们的方法通过自动化卡车携带将会有很高的负荷变化,集装箱可以是空的或装载的,卡车可以简单的携带底盘用自己的方法选择一个集装箱。控制规则应该是这样的,他们在所有可能的负荷变化范围内,提供一个合理的反应,并且能够在不牺牲性能和可靠性的情况下处理这种变化。我们的方法中,卡车将不运送旅客或司机。像驾驶舒适性及自动和手动模式之间转换的人为因素等问题,在目前的系统如可变巡航控制和自动化公路系统中将不适用。在提出的ACTIPOT系统中自动化卡车的使用没有人为因素和使自动化车辆的发展成为未来幻想责任问题。ACTIPOT系统中,自动化卡车将在一个没有人参加的可控环境中操作。因此,卡车自动化是

9、可行的,并且将在ACTIPOT提供的环境中被接受,它合理的设计和优势将被确立。2. 在内河港口和码头间的自动化货物运输(ACTIPOT)系统Figure 3. Automated trucks on dedicated lanes between an inland port and a container terminal.图3所示是ACTIPOT系统的视觉框图。自动卡车正在内陆港口与码头之间运输集装箱。这些卡车是自动行驶在一条几英里长的专门通道上。卡车通道可以是一直专门给自动化卡车用也可以间隔给它们用,其余时间可以给手动车辆使用。ACTIPOT系统中采用的自动化卡车可以被分配很多任务,如从

10、内陆港口运输集装箱,加入车队,加快到所需的速度和在路上巡航,在进入集装箱码头时减速,将自己停在码头起重机下准备卸货,然后装载进口集装箱并返回内陆港口,反之亦然。路上的传感器结合车载卡车传感器,提供适当的测量数据给车载纵向和横向的控制系统以便保持卡车在通道中间,卡车要求的速度以及为装卸货物而停止。该研究的重点是开发这些卡车考虑给出的应用的操作特点并且设计出提供纵向和横向控制系统的全自动功能。仿真用来说明每个单独的卡车在用发达的纵向和横向控制器时具有在自动模式或适当跟随前面卡车的功能。一个能命令和同步吊车和卡车的动作以便以高效、安全的方式完成工作任务的全面系统控制器在设计和分析中。3. 设计考量如

11、今最大的船是17集装箱宽,能承载超过8000标准箱。目前中型船(超过6000标准箱)的服务窗口时间期望为48小时。在ACTIPOT系统中我们考虑以下条件:(1).集装箱码头能为载重为8000标准箱的船服务。假设货船没24小时到达一次,也就是说服务时间应该严格限制在24小时或更少。在我们的设计中,我们再假设船装载进口集装箱量达到其容量的85%,应该装载同样数量的出口集装箱。装载85%的一艘船的周转时间被限制为20小时,一便系统能够在24小时内为任何船服务,甚至是船满载和一些意外发生时。(2). 所有的进口集装箱在被分配到不同目的地前将被运到内陆港口,并且所有的出口货物在被运到集装箱码头前将被储存

12、在内陆港口。所有的集装箱在ACTIPOT系统中都是40英尺单位类型。(3).一个码头起重机的最大物理容量在单一模式下运行时假定为50次移动每小时,在双模式下42次移动每小时。码头起重机最大容量的15%的变化时考虑到的,因为不确定性涉及到了码头起重机的运作。(4).在内陆港口一个起重机的最大物理容量单一模式时被假定为60次移动每小时。这个最大容量的15%的变化也被考虑了。(5).自动化卡车能够工作24小时每天。在本研究中,没有考虑加速和维护时间。4. 自动化卡车自动化卡车是带有扮演司机角色的自动化控制系统的卡车。它具有全自动功能,例如跟踪预期速度,跟随前面的卡车,跟踪设定路线,绕过障碍物等等。这

13、部分我研究用于ACTIPOT系统的动态卡车,并为卡车自动化设计在纵向和横向的控制器。Figure 4. The experiment HDV in PATH.图4是重型车辆用于实验的路线,这属于那些可以用于ACTIPOT系统的系列。它是一辆带有涡轮增压柴油发动机和自动变速器的半挂牵引车辆。有个所谓的“第五轮”用于连接牵引机和半挂车。在这个项目中我们考虑了这个模型并控制研究工作在自动化卡车的路线下进行。5. 动态卡车因为一辆自动化卡车期望跟踪理想的速度并遵循指定路径,所以最重要的输出就是纵向位置与速度还有在牵引机前轴后轴和拖车后轴的横向错误。机载控制器将产生的输入是燃料、制动和转向的命令。鉴于人

14、类驾驶,我们假定燃料和制动命令在同一时间不成问题。严格来说,一辆卡车的纵向和横向动态是耦合在一起的,也就是说纵向流速和横向错误同时都受燃料、制动和转向命令的影响。由于这种耦合,重型车辆的所有动态命令变得非常复杂和难以分析。但是在一些合理的假设中,我们可以把卡车模型解耦成纵向模型和横向模型。这些假设是:卡车只有在路是直的时(或者录得曲率很小时)才变换速度。卡车在路的曲率很大时维持一个恒定速度(或接近恒定的速度)行驶。通过设计控制系统是这两个假设有效,卡车的纵向速度就会受燃料和制动命令影响而横向错误只受转向命令影响。 Automated Container Transport System bet

15、ween Inland Port and Terminals ABSTRACT Due to the fast growing rate of the global container trade, every major port is under the pressure of meeting the projected capacity demand. The scarcity of land at ports in many Metropolitan areas makes it difficult if at all possible to improve capacity by e

16、xpanding the terminal area. As a result alternative solutions have been sought for improving capacity and meeting the growing demand for container storage area and terminal capacity. In this study we propose a new concept called “Automated Cargo Transportation system between Inland Port and Terminal

17、s” (ACTIPOT) which involves the use of automated trucks to transfer containers from an inland port to terminals. The inland port could be a few or more miles away from the terminals where lower cost land is available and is used for storing and processing import/export containers before distribution

18、 to customers or transfer to the terminal for loading on ships. In this report, we design, analyze, simulate and evaluate the various components of the ACTIPOT system with emphasis on the lateral and longitudinal control of the automated trucks and on the overall supervisory controller that synchron

19、izes all operations and transfer of containers between the terminal and inland port using dedicated truck lanes. We employ the use of truck platoons in order to make the control of the overall system easier to handle and understand therefore minimizing the possibility of deadlocks, congestion and fa

20、ilures. Simulations are used to demonstrate that each subsystem operates in a satisfactory manner. Larger scale microscopic simulations are performed to demonstrate the overall performance of the ACTIPOT system. The choice of distances and other variables in the ACTIPOT system are selected by using

21、the ICTF facility as the inland port and Pier G as the terminal both located in the Long Beach area. 1. INTRODUCTIONIn recent years, the global container trade has been growing at an annual rate of about 9 percent, and the corresponding U.S. rate has been around 6 percent. By 2010, it is expected th

22、at 90 percent of all liner freight will be shipped in containers. Thus every major port is expected to double or even triple its processed containers by 2020 2. In order to remain competitive, marine container terminals in metropolitan areas must meet the increasing demand for storage and processing

23、 capacity. Ports such as those of Los Angeles/Long Beach (LA/LB), which handle nearly one third of all U.S. foreign container traffic, are under a lot of pressure to meet projected capacity demand increases in order to remain competitive and avoid congestion at the terminals and contiguous areas. On

24、e feasible approach to reduce the pressure of increased storage capacity demand at terminals is the use of an inland port, which will act as an intermediate storage area before the cargoes are processed for export/import. Such an inland port could be made very efficient by automating all the tasks a

25、ssociated with processing, scheduling, storage, and transfer of containers between the inland port and the container terminals. An important part of such an automated system is the transport of containers using automated trucks. The use of automated trucks in cargo transportation will have the follo

26、wing benefits 2: Automated and consistent container handling operation High container throughput Continuous operation: 24 hours a day, 365 days a year Reduced operational costs, especially labor costs High controllability and reliability High safety standards In recent years, several studies have be

27、en carried out to investigate the feasibility of employing automated trucks for cargo transportation 2. The Delta Terminal at Port of Rotterdam has been operating automated trucks referred to as Automated Guidance Vehicles (AGVs) for transporting containers within the terminal, while the ports of Si

28、ngapore, Thamesport, Hamburg, Kawasaki and Kaoshiung are experimenting with similar systems. In the Delta Terminal at Port of Rotterdam, a central controller instructs all AGVs where to go for new tasks. Each AGV weighs 14 tons, runs on a diesel hydraulic driveline and is capable of carrying up to 4

29、0-ton loads. The AGVs move along noiselessly at 6.8 mph, guided by transponders located beneath the pavement at 6.46 ft intervals. An overview picture is shown in Figure 1.Figure 1. The Delta Port Container Terminal at RotterdamWithin the terminal, the travel distances are relatively short and the t

30、raffic is relatively high, therefore the automated trucks are operating at low speeds. The sensing, control and navigation problem becomes easier than at high speeds. However, if automated trucks are required to transport cargoes between a terminal and an inland port, generally a few miles away, the

31、y will be expected to travel at relatively higher speeds, which will make the vehicle control problem more challenging. The Center of Transport Technology in the Netherlands, studied a container transport system, called “Combi-Road” in 1994 20. Each container is pulled on a semi-trailer by an automa

32、ted truck, as shown on the left side of Figure 2. The trucks are electrically driven and ride along specially designed tracks. The plan is to build a large system that would offer congestion-free transport of containers for a maximum distance of 200 km and at a maximum speed of 50km/h. A prototype v

33、ehicle has been successfully tested at an approximately 200 meters long test track. Figure 2.Combi-Road Recently, a lot of research work has been done in the area of truck automation, automated highway systems and intelligent transportation systems. For example DaimlerChrysler has developed automati

34、c vehicle following control systems for heavy-duty vehicles such as the “electronic draw bar” system 6.Others include the Eaton-VORAD Collision Avoidance System that allows a truck to perform automatic vehicle following while maintaining safe time headway in traffic flow 5. Lateral controllers like

35、the Rapidly Adapting Lateral Position Handler (RAPLH) are used to steer buses/trucks along winding roads and change lanes to pass slower vehicles 5. In the US, a lot of research efforts are currently under way to study the deployment of automated trucks on highways, as platoons or as autonomous vehi

36、cles, operating in mixed traffic 1, 9, 10, 14-17, 21. At the Partners for Advanced Transit and Highways (PATH) there have been several research efforts on truck automation. A number of different longitudinal controllers, proposed and tested in 9, 14 with either linear or nonlinear spacing policies,

37、allow automatic vehicle following in the longitudinal direction. It has been shown that the control strategies satisfy individual stability and string stability for a platoon of trucks. In the case of lateral control of heavy-duty trucks, classical loop-shaping, H-infinity loop-shaping and sliding m

38、ode control methods are tested and verified by experiments in 3. Despite the past and recent activities in the area of truck automation, there is currently no system that utilizes fully automated trucks at relatively high speeds. The development of longitudinal and lateral control laws that are robu

39、st and take advantage of existing sensor and communication technologies is still in its infancy. In this project, we study an Automated Cargo Transportation system between Inland Port and Terminals (ACTIPOT), which employs fully, automated trucks to transfer cargoes between an inland port and the te

40、rminals. Since our approach focuses on the deployment of automated trucks in a controlled environment where human safety is not an issue, it could lead to the first implementation of fully automated trucks at high speeds. In our approach there will be a high variation in the loads carried by the aut

41、omated trucks, containers could be empty or loaded and the truck could simply carry a chassis on its way to pick a container. The control laws should be such that they provide a reasonable response under all possible load variations, and are able to handle such variations without sacrificing perform

42、ance and reliability. In our approach, trucks will not carry passengers or drivers. Issues such as driver comfort, and human factor concerns during transitions between automated and manual mode, that are present in systems such as adaptive cruise control and automated highway systems, will not be ap

43、plicable. The use of automated trucks in the proposed ACTIPOT system are free of the human factors and liability issues that make the deployment of automated vehicles a wishful thinking of the future. In the ACTIPOT system the automated trucks will operate in a controlled environment in the absence

44、of humans. As a result truck automation is feasible and it will be acceptable in the ACTIPOT environment provided it is designed properly and its benefits can be established.2. THE ACTIPOT SYSTEM Figure 3. Automated trucks on dedicated lanes between an inland port and a container terminal.Figure 3 s

45、hows a visual block diagram of the ACTIPOT system. Automated trucks are transferring containers between the inland port and a container terminal. These trucks are self-driven on a dedicated road that could be several miles long. The truck road may be dedicated for the automated trucks all the time o

46、r for time intervals, and the rest of the time could be used by manually driven vehicles. An automated truck employed in the ACTIPOT system will be assigned tasks such as carrying a container from the inland port, joining a platoon, speeding up to a desired velocity and cruising while on the road, s

47、lowing down when entering the container terminal, positioning itself under a quay crane for unloading, then getting loaded with an imported container and driving back to the inland port, and vice versa. Sensors on the road in conjunction with on-board the truck sensors, provide the appropriate measu

48、rements that are used by the on-board longitudinal and lateral control system in order to keep the truck at the center of the lane, track desired speeds and stop for loading and unloading. The focus of this research is to develop the operating characteristics of these trucks given the application un

49、der consideration, define the appropriate sensor and actuator characteristics and design longitudinal and lateral control systems that will provide full-automated capability. Simulations are carried out to demonstrate that each individual truck, with the developed longitudinal and lateral controller

50、s, has the capability of driving in an autonomous mode and/or properly following a preceding truck. An overall system controller, which dictates and synchronizes the movements of the cranes and trucks in order to complete the work tasks in an efficient and safe manner, is designed and analyzed. 3. D

51、esign Considerations The largest ships today are 17 containers wide and capable of carrying over 8,000 TEUs. A current service window expectation for mega-ships (over 6,000 TEUs) is 48 hours 2. In the design of the ACTIPOT system, we consider the following conditions: 1. The Container Terminal (CT)

52、is able to serve ships with capacity of 8,000 TEUs .It is assumed that the ships will arrive every 24 hours, which means the service time should be strictly limited to 24 hours or less. In our design, we further assume that the ship carries import containers up to 85% of its capacity and should be r

53、eloaded with the same number of export containers. The turnaround time for a ship with 85% load is restricted to 20 hours, so that the system is able to serve any ship within 24 hours even if the ship is fully loaded and some unexpected events take place. 2. All the import containers will be transpo

54、rted to the inland port before they are distributed to different destinations, and all the export cargoes will be stored in the inland port before they are transferred to the CT. All the containers in the ACTIPOT system are of Forty-foot Equivalent Units type. 3. The maximum physical capacity of a q

55、uay crane is assumed to be 50 moves per hour in the single mode operation, and 42 moves per hour in the double mode. A variance of 15% to the maximum capacity of the quay cranes is considered, due to the uncertainties involved in the quay crane operations. 4. The maximum physical capacity of a crane

56、 in the inland port is assumed to be 60 moves per hour in the single mode. A variance of 15% is considered for this maximum capacity. 5. The automated trucks are able to work 24 hours per day. No fueling or maintenance time is considered for the trucks in this study. 4. AUTOMATED TRUCKS An automated

57、 truck is a truck with an automatic control system that plays the role of a driver. It has the capability of full automation, such as tracking desired speed trajectories, following the preceding truck, tracing an assigned path, bypassing obstacles ahead, and so on. In this section, we investigate th

58、e dynamics of trucks that could be used for the ACTIPOT system, and design longitudinal and lateral controllers for truck automation. Figure 4 shows a Heavy-Duty Vehicle (HDV) used for experiments at path, which belongs to the class of those that can be used with the ACTIPOT system. It is a tractor

59、semi-trailer vehicle with turbocharged diesel engine and automatic transmission. There is a so-called “fifth wheel”, which links the tractor and the semi-trailer. In this project we took into account the modeling and control research work conducted under path for automated trucks. Figure 4. The expe

60、riment HDV in PATH.5. Truck Dynamics Since an automated truck is expected to track the desired speed profile and follow the assigned path, the most essential outputs are the longitudinal position and velocity, and the lateral errors at the tractor front axis, the tractor rear axis and the trailer re

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论