版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、奥数知识点总复习1. 圆周率常取数据3.14 X1=3.143.14 X2=6.283.14 X3=9.423.14 X4= 12.563.14 X5= 15.73.15 X6= 18.843.14 X7= 21.983.14 X8=25.123.14 X 9= 28.262常数特殊数的乘积125X 8= 100025X 4= 100125X 3= 375625X 16=100007X 11X13= 100125X8=200125X 4=50037X 3=111100 内质数:2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73
2、79 83 89 97单位换算:1 米=3尺=3.2808 英尺 =1.0926 码1 公里 =1000米=2里1 码=3英尺 =36英寸1 海里 =1852米=3.704 里=1.15 英里1 平方公里 =1000000平方米 =100公顷 =4 平方里 =0.3861 平方英里1 平方米 =100平方分米=10000平方厘米1 公顷 =100公亩 =15亩=2.4711 英亩1 立方米 =1000立方分米=1000000立方厘米1 立方米 =27立方尺 =1.308 立方码 =35.3147 立方英尺1 吨=1000公斤 =1000千克1 公斤 =1000克=2斤(市制) =2.2046
3、磅加减法运算性质: 同级运算时,如果交换数的位置,应注意符号搬家。加、去括号时要注意以下几点:括号前面是加号,去掉括号不变号;加号后面添 括号,括号里面不变号;括号前面是减号,去掉括号要变号;减号后面添括号, 括号里面要变号。乘除法运算性质乘法中性质:( 1)乘法交换律( 2)乘法结合律(3)乘法分配律(4)乘法性质( 5)积的变化规律:一扩一缩法。除法中性质:当被除数为几个数字之和或者差时才可以用除法分配律积的变化规律:同扩同缩法。同级运算时,如果有交换数的位置,应该注意符号搬家。加、去括号时注意以下几点:括号前面是乘号,去掉或加上括号不变号;括号前面是除号,去掉或加上括号要变号;等差数列数
4、列是指按一定规律顺序排列成一列数。 如果一个数列中从第二个数开始, 相邻两个数的差都相等, 我们就把这样的一列数叫做等差数列, 等差数列中的每一个数都叫做项,第一个数叫第一项,通常也叫“首项”,第二个数叫第二项,第三个数叫第三项最后一项叫做“末项”。等差数列中相邻两项的差叫做“公差”,等差数列中项的个数叫做“项数”。公式:和=(首项+末项)x项数+ 2项数=(末项-首项)+公差+1第门项=首项+(n-1) x公差和倍问题己知几个数的和及这几个数之间的倍数关系,求这几个数的应用题叫和倍问题。解答和倍问题,一般是先确定较小的数为标准数(或称一倍数),再根据其他几个数与较小数的倍数关系, 确定总和相
5、当于标准数的多少倍, 然后用除法求出标准数,再求出其他各数,最好采用画线段图的方法。和倍公式:和+ (倍数+ 1)=小数差倍问题己知两个数的差及它们之间的倍数关系, 求这两个数的应用题叫差倍问题。 解答差倍问题,一般以较小数作为标准数(一倍数),再根据大小两数之间的倍数关系,确定差是标准数的多少倍,然后用除法先求出较小数,再求出较大数。解答这类问题,先画线段图,帮助分析数量关系。差倍公式:差+ (倍数1)二小数和差问题和差问题是根据大小两个数的和与两个数的差求大小两个数各是多少的应用题。解答和差问题的基本公式是:(和-差)+ 2=较小数(和+差)+ 2=较大数九、年龄问题己知两个人或几个人的年
6、龄, 求他们年龄之间的某种数量关系; 或己知某些人年龄之间的数量关系, 求他们的年龄等, 这种题称为年龄问题。 年龄问题的特点是:一般用和差或者和倍问题的方法解答。( 1)两人的年龄之差是不变的,称为定差。 ( 2) 两个人的年龄同时都增加同样的数量。 ( 3) 两个年龄之间的倍数关系,随着年龄的增长,也在发生变化。年龄问题的解题方法是:几年后二大小年龄之差一倍数差-小年龄几年前二小年龄-大小年龄差一倍数差平均数 求平均数必须知道总数和份数, 常用公式:平均数=总数+份数总数=平均数X份数 份数=总数+平均数相遇与追及问题路程赵度乂时间时间=路程+速度 速度=路程一时间。相遇问题它的特点是两个
7、运动物体或人, 同时或不同时从两地相向而行, 或 同时同地相背而行,要解答相遇问题,掌握以下数量关系:速度和X相遇时间= 路程路程+速度和=相遇时间速度+相遇时间=速度和追及问题 运动的物体或人同向而不同时出发, 后出发的速度快, 经过一段时间追上先出发的, 这样的问题叫做追及问题, 解答追及问题的基本条件是“追及路程”和“速度差”。追及问题的基本数量关系是:追及时间=追及路程+速度差追及路程=速度差X追及时间速度差=追及路程+追及时间行船问题船在江河里航行, 前进的速度与水流动的速度有关系。 船在流水中行程问题, 叫做行船问题(也叫流水问题),船顺流而下的速度和逆流而上的速度与船速、水速的关
8、系是: 顺水速度=船速水速,逆水速度=船速水速。由于顺水速度是船速与水速的和, 逆水速度是船速与水速的差, 因此行船问题就是和差问题, 所以解答行船问题有时需要驼用和差问题的数量关系。船速=(顺水速度+逆水速度)+ 2水速=(顺水速度逆水速度)+2因为行船问题也是行程问题, 所以在行船问题中也反映了行程问题的路程、 速度与时间的关系。顺水路程=顺水速度x时间逆水路程3水速度X时间过桥问题过桥问题的一般数量关系是:路程=桥长车长车速=(桥长+车长)+通过时间通过时间=(桥长+车长)+车速车长=车速X通过时间-桥长桥长二车速X通过时间-车长植树问题在首尾不相接的路线上植树,段数与棵数关系可分为三类
9、:( 1)两端都种树段数=棵数1( 2)一端种一端不种 段数=棵数( 3)两端都不种段数=棵数 1在首尾相接的路线上种树(如圆、正方形、闭合曲线等)段数=棵数还原问题还原问题又叫逆推问题。 己知一个数的结果, 再经过逆运算反求原数, 叫做还原问题。 解决这类题要从结果出发, 逐步向前一步一步推理, 每一步运算都是原来运算的逆运算(即变加为减,变减为加,变乘为除,变除为乘)。方阵问题很多的人或物按一定条件排成正方形(简称方阵),再根据己知条件求总人数,这类题叫方阵问题。在解决方阵问题时,要搞清方阵中一些量(如层数,最外层人数,最里层人数,总人数)之间的关系。方阵问题的基本特点是:( 1)方阵不管
10、在哪一层,每边的人数都相同,每向里面一层,每边上的人数减少 2,每一层就少8。(2)每层人数=(每边人数1) X4(3)每边人数=每层人数+ 4+ 1(4)实心方阵人数=每边人数X每边人数幻方与数阵幻方的特点:一个幻方每行、每列、每条对角线上的几个数的和都相等。这相相等的和叫“幻和”。两种方法:奇阶: 1、九子排列法2、罗伯法,3、巴舍法。偶阶: 1、 对称交换法2、 圆心方阵法。 数阵有三种基本类型: ( 1) 封闭型, ( 2)辐射型(3)综合型解数阵问题一般思路是从和相等入手,确定重处长使用的中心数,是解答解数阵类型题的解题关键。一般答案不唯一。奇数与偶数加法:偶数偶数=偶数奇数奇数=偶
11、数偶数奇数=奇数减法:偶数偶数=偶数奇数奇数=偶数偶数奇数=奇数乘法:偶数X偶数二偶数奇数x奇数=数偶数x奇数二偶数盈亏问题通常是比较法和对应法结合使用。 公式是: (同盈同亏用减法, 一亏一盈用加法)即:两次分配结果差+两次分配数差二人数牛吃草问题 牛吃草问题涉及三种数量:A.原有的草。B.新长出的草。C.牛吃掉的草。牛吃草问题解法一般分为三步:一、求每天新生的草量;二、求原有草量;三、求出最终的问题。(类似于行程问题中的追及问题)还原问题解题关键: 在从后往前推算的过程中, 每一步都是做同原来相反的运算, 原来加的,运算时用减;原来减的,运算时用加;原来乘的,运算时用除;原来除的,运算时用
12、乘。假设问题假设法是解答应用题时经常用到的一种方法。 所谓“假设法”就是依据题目中的己知条件或结论作出某种设想, 然后按照己知条件进行推算, 根据数量上出现的矛盾,再适当调整,从而找到正确答案。余数问题一个带余数除法算式包含4个数:被除数+除数=商余数。它们的关系也可 表示为:被除数=除数X商十余数,或(被除数余数)+除数 =商。一笔画和多笔画凡是由偶点组成的连通图, 一定可以一笔画成; 画时可以任一偶点为起点,最后能以这个点为终点画完此图。( 2)凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。(3)多笔画定理 有2n (n1)个奇点的
13、连通图形,可以用 n笔画完(彼此无 公共线),而且至少要n 次画完 .抽屉原理抽屉原则一:把n+1 (或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里 有两个或两个以上的苹果。抽屉原则二:把(mrK n+1)个(或更多个)苹果放进n个抽屉里,必须一个抽屉 里有(m+D个(或更多的)苹果。说明:应用抽屉原则解题,要从最坏的情况去思考。分解因式把一个合数写成几个质数相乘的形式,叫做分解质因数。一个自然数的约数的个数,恰为各个质因数的指数加 1 后的乘积。一个数的完全平方数, 各个质因数的个数, 恰好是平方前这个数各个质因数个数的 2 倍。一个完全平方数各个质因数的个数都是偶数。最大公约数与最小公
14、倍数求两个数的最大公约数一般有三种方法:( 1)分解质因数法( 2)短除法( 3)辗转相除法分数的比较分母相同的分数比较大小, 分子大的分数比较大。 分子相同的分数比较大小, 分母大的分数反而小。 分子和分母都不相同的分数比较大小, 可以把它们转化成分母相同的分数比较大小;也可以把它们转化成分子相同的分数比较大小。性质:一个真分数的分子和分母都加上同一个自然数,所得的新分数比原分数大。一个真分数的分子、分母都减去同一个自然数 (这个自然数小于真分数的分子)所得的新分数比原分数小。一个假分数的分子、分母都减去同一个自然数 (这个自然数小于假分数分母),所得的新分数比原分数大。一个假分数的分子、分
15、母都加上同一个自然数,所得的新分数比原分数小。剪纸问题公式: 2 对折后剪的次数+1=段数。最大最小1、解答最大最小的问题,可以进行枚举比较。在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。2、运用规律。( 1)两个数的和一定,则它们的差越接近,乘积越大;当它们相等(差为 0)时,乘积最大。3、考虑极端情况。如“连接两点间的线段最短”、“作对称点”、“联系实际考虑问题”等。比较大小估算最常用的技巧是“放大缩小”, 即先对某个数或算式进行适当的“放大”或“缩小”, 确定它的取值范围, 再根据其他条件得出结果, 调整放缩幅度的方法有两条:一是分组(分段),并尽可能使每
16、组所对应的标准相同;另一种方法是按近似数乘除法计算法则,比要求的精确度多保留一位,进行计算。钟表问题解答钟表问题, 我们首先想办法把有些能转化成相遇或追及问题的转化为相遇或追及问题来解答。需记住以下常用数据:钟表上有 12 大格, 60 小格,每大格30 度,每小格 6 度。分针每分钟走:6度;时针每分钟走:0.5 度;速度差: 5.5 度解答钟表上的时间快慢问题, 关键是抓住单位时间内的误差, 然后根据某一时间段内含多少个单位时间,就可以求出这一时间段内的误差。分数应用题的计算解答较复杂的分数应用题, 一定要找准单位“ 1”, 如果单位“ 1”的量是变化的,就要从题目中找出不变的量, 把不变
17、的量看作单位“ 1”, 将己知条件进行转化,找出所求数量相当于单位“ 1”的几分之几,再列式解答。 2 还可以借助线段图来帮助理解题意, 列式解答。 3 对较复杂的分数应用题, 还可以列方程来解答。利润问题解答利润问题你必须理解以下的关系式。( 1)利润=卖价成本(2)利润的百分数=(卖价一成本)+成本X 100%(3)卖价=成本X ( 1 +利润率)(4)成本=卖价+ ( 1 +利润率)(5)折扣=实际售价+原售价X 100%斫扣 1)(6)利息=本金X利率X时间(7)税后利息=本金X利率X时间X (120%)浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量+溶液的重量X 100唳浓度溶
18、液的重量X浓度=溶质的重量【盈亏问题公式】( 1)一次有余(盈) ,一次不够(亏) ,可用公式:(盈+亏)+(两次每人分配数的差)=人数。例如, “小朋友分桃子,每人10 个少 9个,每人 8 个多 7 个。问:有多 少个小朋友和多少个桃子? ”解(7+9) + (10-8) =16 +2=8 (个)人数10X8-9=80-9=71 (个) 桃子或 8X8+7=64+7=71 (个)答:有 8 个小朋友和71 个桃子。( 2)两次都有余(盈),可用公式:(大盈-小盈)+ (两次每人分配数的差)=人数。例如, “士兵背子弹作行军训练,每人背 45 发,多 680发;若每人背50发,则还多 200 发。问:有士兵多少人?有子弹多少发? ”解(680-200) + (50-45) =480代=96 (人)45X96+680=5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电销服务知识培训课件
- 员工关怀管理员工关怀培训
- 热泵基本知识培训课件
- 中国临终关怀-现状及其发展探索
- 赢在执行力培训
- 二零二五年度安置房房票买卖贷款违约责任合同3篇
- 基于SpringBoot的社区防控管理系统的设计与实现
- 胸腔闭式引流护理
- 积极老龄化理论的国内外研究进展
- 人教版八年级历史与社会上册说课稿综合探究三 探寻丝绸之路
- 店铺交割合同范例
- 新生儿心脏病护理查房
- 规划设计行业数字化转型趋势
- 物业年终总结汇报工作
- 金色简约蛇年年终总结汇报模板
- 医院住院病历质量检查评分表(评分标准)
- 12.1 拥有积极的人生态度(教学设计)2024七年级道德与法治上册
- 视听说课程(《走遍美国》)教学方案
- 2024年内蒙古中考语文试卷五套合卷附答案
- 高中体育与健康-短跑教学设计学情分析教材分析课后反思
- 厂房厂区保洁方案
评论
0/150
提交评论