2023高考科学复习解决方案-数学(名校内参版) 第八章 8.5空间直线、平面的垂直(Word学案)_第1页
2023高考科学复习解决方案-数学(名校内参版) 第八章 8.5空间直线、平面的垂直(Word学案)_第2页
2023高考科学复习解决方案-数学(名校内参版) 第八章 8.5空间直线、平面的垂直(Word学案)_第3页
2023高考科学复习解决方案-数学(名校内参版) 第八章 8.5空间直线、平面的垂直(Word学案)_第4页
2023高考科学复习解决方案-数学(名校内参版) 第八章 8.5空间直线、平面的垂直(Word学案)_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、85空间直线、平面的垂直(教师独具内容)1从基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面垂直的关系,归纳出以下性质定理和判定定理:(1)垂直于同一个平面的两条直线平行(2)两个平面垂直,如果一个平面内有一条直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直(3)如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直(4)如果一个平面过另一个平面的垂线,那么这两个平面垂直2以立体几何的定义、基本事实和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理,并能运用基本事实、定理和已获得的结论证明一些关于空间图形的垂直关系的简单命题3重

2、点提升逻辑推理和直观想象素养(教师独具内容)1本考点属于高考必考内容,命题的关注点在于垂直关系的证明,难点在于相关判定定理与性质定理的正确运用直线、平面垂直的判定与性质常与直线、平面平行的判定与性质融合在一起综合考查既可以以选择题、填空题的形式呈现,也可以以解答题的形式呈现2预测2023年高考将以直线、平面垂直的判定及其性质为重点考查内容,涉及线线垂直、线面垂直及面面垂直的判定及其应用,题型为解答题中的一问,或与平行相结合进行命题的判断(教师独具内容)(教师独具内容)1直线与平面垂直(1)定义如果直线l与平面内的eq o(,sup3(01)任意一条直线都垂直,则直线l与平面垂直(2)判定定理与

3、性质定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条eq o(,sup3(02)相交直线垂直,那么该直线与此平面垂直eq o(,sup3(03)eq blc rc(avs4alco1(la,lb,abO,a,b)eq avs4al(l)性质定理垂直于同一个平面的两条直线eq o(,sup3(04)平行eq o(,sup3(05)eq blc rc(avs4alco1(a,b)eq avs4al(ab)2直线与平面所成的角(1)定义一条直线l与一个平面相交,但不与这个平面eq o(,sup3(01)垂直,这条直线叫做这个平面的斜线,斜线与平面的交点A叫做斜足过斜线上斜足以外的一

4、点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影平面的一条斜线和它在平面上的eq o(,sup3(02)射影所成的角,叫做这条直线和这个平面所成的角若一条直线垂直于平面,它们所成的角是eq o(,sup3(03)90,若一条直线和平面平行,或在平面内,它们所成的角是0.(2)范围:eq blcrc(avs4alco1(0,f(,2).3平面与平面垂直(1)二面角的有关概念二面角:从一条直线出发的eq o(,sup3(01)两个半平面所组成的图形叫做二面角;这条直线叫做二面角的棱,这两个半平面叫做二面角的面二面角的平面角:在二面角l的棱l上任取一点O,以点O为垂足,在半

5、平面和内分别作eq o(,sup3(02)垂直于棱l的射线OA和OB,则射线OA和OB构成的AOB叫做二面角的平面角二面角的平面角的范围:eq o(,sup3(03)0,(2)平面与平面垂直的定义一般地,两个平面相交,如果它们所成的二面角是eq o(,sup3(04)直二面角,就说这两个平面互相垂直(3)平面与平面垂直的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面过另一个平面的eq o(,sup3(05)垂线,那么这两个平面垂直eq blc rc(avs4alco1(l,l)eq avs4al()性质定理两个平面垂直,如果一个平面内有一条直线垂直于这两个平面的eq o(,su

6、p3(06)交线,那么这条直线与另一个平面垂直eq blc rc(avs4alco1(,l,a,la)l4常用结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面(3)垂直于同一条直线的两个平面平行(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面1思考辨析(正确的打“”,错误的打“”)(1)垂直于同一个平面的两平面平行()(2)若,aa.()(3)若平面内的一条直线垂直于平面内的无数条直线,则.()答案(1)(2)(3)2

7、下列命题中不正确的是()A如果平面平面,且直线l平面,则直线l平面B如果平面平面,那么平面内一定存在直线平行于平面C如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面D如果平面平面,平面平面,l,那么l答案A解析根据面面垂直的性质,知A不正确,直线l可能平行平面,也可能在平面内,也可能与平面相交3设平面与平面相交于直线m,直线a在平面内,直线b在平面内,且bm,则“”是“ab”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案A解析若,因为m,b,bm,所以根据两个平面垂直的性质定理可得b,又a,所以ab;反过来,当am时,因为bm,一定有ba,但不能保证b,所以

8、不能推出.4(多选)若平面平面,且l,则下列命题中正确的是()A平面内的直线必垂直于平面内的任意一条直线B平面内的已知直线必垂直于平面内的无数条直线C平面内的任一条直线必垂直于平面D过平面内任意一点作交线l的垂线,则此垂线必垂直于平面答案BD解析A项,如图,a,b,且a,b与l都不垂直,则a,b不一定垂直,故A错误;B项,如图,a,作bl,则b,则内所有与b平行的直线都与a垂直,故B正确;C项,如图,a,但a与l不垂直,则a与不垂直,故C错误;D项,如图,由两平面垂直的性质定理可知D正确故选BD.5在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PAPBPC,则点O是ABC的_心;

9、(2)若PAPB,PBPC,PCPA,则点O是ABC的_心答案(1)外(2)垂解析(1) 如图,连接OA,OB,OC,PO平面ABC,在RtPOA中,OA2PA2PO2,同理OB2PB2PO2,OC2PC2PO2.又PAPBPC,故OAOBOC,点O是ABC的外心(2)由PAPB,PAPC可知PA平面PBC,PABC,又POBC,BC平面PAO,AOBC,同理BOAC,COAB.故点O是ABC的垂心1(多选)(2021新高考卷)在正三棱柱ABCA1B1C1中,ABAA11,点P满足eq o(BP,sup6()eq o(BC,sup6()eq o(BB1,sup6(),其中0,1,0,1,则()

10、A当1时,AB1P的周长为定值B当1时,三棱锥PA1BC的体积为定值C当eq f(1,2)时,有且仅有一个点P,使得A1PBPD当eq f(1,2)时,有且仅有一个点P,使得A1B平面AB1P答案BD解析由点P满足eq o(BP,sup6()eq o(BC,sup6()eq o(BB1,sup6(),可知点P在正方形BCC1B1内如图.对于A,当1时,可知点P在线段CC1(包括端点)上运动如图,在AB1P中,因为AB1eq r(2),APeq r(12),B1Peq r(112),所以AB1P的周长LAB1APB1P不为定值,所以A错误;对于B,当1时,可知点P在线段B1C1(包括端点)上运动

11、如图,由图可知,线段B1C1平面A1BC,即点P到平面A1BC的距离为定值,又A1BC的面积是定值,所以三棱锥PA1BC的体积为定值,所以B正确;对于C,当eq f(1,2)时,分别取线段BC,B1C1的中点为D,D1,可知点P在线段DD1(包括端点)上运动如图,很显然当点P与点D或D1重合时,均满足A1PBP,所以C错误;对于D,解法一:当eq f(1,2)时,分别取线段BB1,CC1的中点为M,N,可知点P在线段MN(包括端点)上运动如图,设AB1与A1B交于点K,连接PK,要使A1B平面AB1P,需A1BKP,所以点P只能是棱CC1的中点N,所以D正确解法二:当eq f(1,2)时,分别

12、取线段BB1,CC1的中点为M,N,可知点P在线段MN(包括端点)上运动以C为原点,建立如图所示的空间直角坐标系Cxyz,则B(0,1,0),B1(0,1,1),A1eq blc(rc)(avs4alco1(f(r(3),2),f(1,2),1),Peq blc(rc)(avs4alco1(0,1,f(1,2).所以eq o(A1B,sup6()eq blc(rc)(avs4alco1(f(r(3),2),f(1,2),1),eq o(B1P,sup6()eq blc(rc)(avs4alco1(0,f(1,2).若A1B平面AB1P,则A1BB1P,所以eq o(A1B,sup6()eq o

13、(B1P,sup6()0,即eq f(1,2)eq f(1,2)0.解得1.所以只存在一个点P使得A1B平面AB1P,此时点P与点N重合,所以D正确故选BD.2(2020新高考卷) 日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40,则晷针与点A处的水平面所成角为()A20B40C50D90答案B解析画出截面图如图所示,其中CD是赤道所在平面的截线,l是点A处的水平面的截

14、线,依题意可知OAl,AB是晷针所在直线,m是晷面的截线,依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得mCD,根据线面垂直的定义可得ABm.由于AOC40,mCD,所以OAGAOC40,由于OAGGAEBAEGAE90,所以BAEOAG40,即晷针与点A处的水平面所成角为BAE40.故选B.3(2021全国乙卷)如图,四棱锥PABCD的底面是矩形,PD底面ABCD,M为BC的中点,且PBAM.(1)证明:平面PAM平面PBD;(2)若PDDC1,求四棱锥PABCD的体积解(1)证明:PD平面ABCD,AM平面ABCD,PDAM.又PBAM,PBPDP,PB平面PBD,

15、PD平面PBD,AM平面PBD.又AM平面PAM,平面PAM平面PBD.(2)四边形ABCD是矩形,M为BC的中点,BMeq f(1,2)AD且ABDC1.AM平面PBD,BD平面PBD,AMBD.MADADB90,又BAMMAD90,BAMADB,BAMADB,eq f(BM,AB)eq f(AB,AD),将式代入,解得ADeq r(2).S矩形ABCDADDCeq r(2)1eq r(2),VPABCDeq f(1,3)S矩形ABCDPDeq f(1,3)eq r(2)1eq f(r(2),3).4. (2021全国甲卷)已知直三棱柱ABCA1B1C1中,侧面AA1B1B为正方形,ABBC

16、2,E,F分别为AC和CC1的中点,BFA1B1.(1)求三棱锥FEBC的体积;(2)已知D为棱A1B1上的点,证明:BFDE.解(1)如图,取BC的中点为M,连接EM.由已知可得EMAB,ABBC2,CF1,EMeq f(1,2)AB1,ABA1B1,所以EMA1B1,由BFA1B1得EMBF,又EMCF,BFCFF,所以EM平面BCF,故V三棱锥FEBCV三棱锥EFBCeq f(1,3)eq f(1,2)BCCFEMeq f(1,3)eq f(1,2)211eq f(1,3).(2)证明:连接A1E,B1M,由(1)知EMA1B1,所以DE在平面EMB1A1内在正方形CC1B1B中,由于F

17、,M分别是CC1,BC的中点,所以由平面几何知识可得BFB1M,又BFA1B1,B1MA1B1B1,所以BF平面EMB1A1,又DE平面EMB1A1,所以BFDE.5. (2019全国卷)如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1.(1)证明:BE平面EB1C1;(2)若AEA1E,AB3,求四棱锥EBB1C1C的体积解(1)证明:由已知得B1C1平面ABB1A1,BE平面ABB1A1,故B1C1BE.又BEEC1,B1C1EC1C1,B1C1,EC1平面EB1C1,所以BE平面EB1C1.(2)由(1)知BEB190.由题设知RtABERtA1B

18、1E,所以AEBA1EB145,故AEAB3,AA12AE6.如图,作EFBB1,垂足为F,则EF平面BB1C1C,且EFAB3.所以四棱锥EBB1C1C的体积Veq f(1,3)36318.一、基础知识巩固考点垂直关系的基本问题例1,是两个平面,m,n是两条直线,则下列命题中错误的是()A如果mn,m,n,那么B如果m,那么mC如果l,m,m,那么mlD如果mn,n,m,那么答案D解析在A中,如果mn,m,n,那么由面面垂直的判定定理得,故A正确;在B中,如果m,那么m,故B正确;在C中,如果l,m,m,那么由线面平行的性质定理得ml,故C正确;在D中,如果mn,n,m,那么与相交或平行,故

19、D错误例2(多选)如图,在三棱锥ABCD中,ACAB,BCBD,平面ABC平面BCD.下列结论正确的是()AACBDB平面ABC平面ABDC平面ACD平面ABDDCD平面ABD答案ABC解析因为平面ABC平面BCD,平面ABC平面BCDBC,BCBD,所以BD平面ABC,又AC平面ABC,所以BDAC,故A正确;因为BD平面ABC,BD平面ABD,所以平面ABD平面ABC,故B正确;因为ACAB,BDAC,ABBDB,所以AC平面ABD,又AC平面ACD,所以平面ACD平面ABD,故C正确;若CD平面ABD,则CDBD,与BCBD矛盾,故CD与平面ABD不垂直,故D错误1.已知平面,直线n,直

20、线m,则下列命题正确的是()AmnBmnCmDmnm答案C解析由平面,直线n,直线m,知:对于A,则m,n平行或异面,故A错误;对于B,则m,n相交、平行或异面,故B错误;对于C,m,则由面面垂直的判定定理得,故C正确;对于D,mn,则m与相交、平行或m,故D错误2在下列四个正方体ABCDA1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是()答案D解析如图,在正方体ABCDA1B1C1D1中,E,F,G,M,N,Q均为所在棱的中点,易知E,F,G,M,N,Q六个点共面,直线BD1与平面EFMNQG垂直,并且选项A,B,

21、C中的平面与这个平面重合,不满足题意,只有选项D中的直线BD1与平面EFG不垂直,满足题意与线面垂直关系有关命题真假的判断方法(1)借助几何图形来说明线面关系(2)寻找反例,只要存在反例,结论就不正确(3)反复验证所有可能的情况,必要时要运用判定或性质定理进行简单说明考点直线与平面垂直的判定与性质例3如图所示,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点求证:(1)CDAE;(2)PD平面ABE.证明(1)在四棱锥PABCD中,PA底面ABCD,CD平面ABCD,PACD.又ACCD,PAACA,PA,AC平面PAC,CD平面PAC.又A

22、E平面PAC,CDAE.(2)由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.由(1)知AECD,且PCCDC,PC,CD平面PCD,AE平面PCD,又PD平面PCD,AEPD.PA底面ABCD,AB平面ABCD,PAAB.又ABAD,且PAADA,AB平面PAD,又PD平面PAD,ABPD.又ABAEA,AB,AE平面ABE,PD平面ABE.例4如图,在四棱锥PABCD中,四边形ABCD是矩形,AB平面PAD,ADAP,E是PD的中点,M,N分别在AB,PC上,且MNAB,MNPC.证明:AEMN.证明AB平面PAD,AE平面PAD,AEAB,又ABCD,AECD.ADA

23、P,E是PD的中点,AEPD.又CDPDD,CD,PD平面PCD,AE平面PCD.MNAB,ABCD,MNCD.又MNPC,PCCDC,PC,CD平面PCD,MN平面PCD,AEMN.3.如图,直三棱柱ABCA1B1C1中,ACBC1,ACB90,D是A1B1的中点,F在BB1上(1)求证:C1D平面AA1B1B;(2)从下列三个条件中选取哪两个条件可使AB1平面C1DF?并证明你的结论F为BB1的中点;AB1eq r(3);AA1eq r(2).解(1)证明:ABCA1B1C1是直三棱柱,A1C1B1C11,且A1C1B190.又D是A1B1的中点,C1DA1B1.AA1平面A1B1C1,C

24、1D平面A1B1C1,AA1C1D,又A1B1AA1A1,C1D平面AA1B1B.(2) 选能证明AB1平面C1DF.连接DF,A1B,DFA1B,在ABC中,ACBC1,ACB90,则ABeq r(2),又AA1eq r(2),则A1BAB1,DFAB1.C1D平面AA1B1B,AB1平面AA1B1B,C1DAB1.DFC1DD,DF,C1D平面C1DF,AB1平面C1DF.4. 如图,l,PA,PB,垂足分别为A,B,a,aAB.求证:al.证明PA,l,PAl.同理PBl.PAPBP,PA,PB平面PAB,l平面PAB.又PA,a,PAa.aAB,PAABA,PA,AB平面PAB,a平面

25、PAB.al.1证明直线和平面垂直的常用方法(1)判定定理(2)垂直于平面的传递性(ab,ab)(3)面面平行的性质(a,a)(4)面面垂直的性质(,a,la,ll)2证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想3垂直关系里线线垂直是基础eq avs4al(线线垂直,哪里找)eq blcrc (avs4alco1(勾股定理逆定理,线面垂直则垂直面内所有线,等腰三角形三线合一,矩形邻边垂直,菱形对角线垂直)4垂直关系中线面垂直是重点(1)eq avs4al(线面垂直,哪里找)eq blcrc (avs4alco1(

26、垂直两条相交线,垂面里面作垂线,直正棱柱的侧棱是垂线,正棱锥的顶点与底面的中心的连线是垂线)(2)eq avs4al(线垂面,有何用)eq blcrc (avs4alco1(垂直里面所有线证线线垂直,过垂线作垂面证明面面垂直)考点平面与平面垂直的判定与性质例5在矩形ABCD中,AB2AD4,E是AB的中点,沿DE将ADE折起,得到如图所示的四棱锥PBCDE.(1)若平面PDE平面BCDE,求四棱锥PBCDE的体积;(2)若PBPC,求证:平面PDE平面BCDE.解(1) 如图所示,取DE的中点M,连接PM,由题意知,PDPE,PMDE,又平面PDE平面BCDE,平面PDE平面BCDEDE,PM

27、平面PDE,PM平面BCDE,即PM为四棱锥PBCDE的高在等腰直角三角形PDE中,PEPDAD2,PMeq f(1,2)DEeq r(2),而梯形BCDE的面积Seq f(1,2)(BECD)BCeq f(1,2)(24)26,四棱锥PBCDE的体积Veq f(1,3)PMSeq f(1,3)eq r(2)62eq r(2).(2)证明:取BC的中点N,连接PN,MN,则BCMN,PBPC,BCPN,MNPNN,MN,PN平面PMN,BC平面PMN,PM平面PMN,BCPM,由(1)知,PMDE,又BC,DE平面BCDE,且BC与DE是相交的,PM平面BCDE,PM平面PDE,平面PDE平面

28、BCDE.5. 如图,在四面体PABC中,PAPCABBC5,AC6,PB4eq r(2),线段AC,PA的中点分别为O,Q.(1)求证:平面PAC平面ABC;(2)求四面体POBQ的体积解(1)证明:PAPC,O是AC的中点,POAC.在RtPAO中,PA5,OA3,由勾股定理,得PO4.ABBC,O是AC的中点,BOAC.在RtBAO中,AB5,OA3,由勾股定理,得BO4.PO4,BO4,PB4eq r(2),PO2BO2PB2,POBO.BOACO,BO,AC平面ABC,PO平面ABC.PO平面PAC,平面PAC平面ABC.(2)由(1),可知平面PAC平面ABC.平面ABC平面PAC

29、AC,BOAC,BO平面ABC,BO平面PAC,VPOBQVBPOQeq f(1,3)SPOQBOeq f(1,3)eq f(1,2)SPAOBOeq f(1,3)eq f(1,2)eq f(1,2)3444.四面体POBQ的体积为4.6. 如图,在四棱锥PABCD中,ABCD,CDAD,平面PAD平面ABCD,APD为等腰直角三角形,PAPD.求证:PBPD.证明平面PAD平面ABCD,平面PAD平面ABCDAD,CD平面ABCD,CDAD,CD平面PAD.又CDAB,AB平面PAD.PD平面PAD,PDAB,又APD为等腰直角三角形,PDPA,又PAABA,PA,AB平面PAB,PD平面P

30、AB,又PB平面PAB,PBPD.1判定面面垂直的方法(1)面面垂直的定义;(2)面面垂直的判定定理(a,a)2证面面垂直的思路(1)关键是考虑证哪条线垂直哪个面这必须结合条件中各种垂直关系充分发挥空间想象综合考虑(2)条件中告诉我们某种位置关系,就要联系到相应的性质定理,如已知两平面互相垂直,我们就要联系到两平面互相垂直的性质定理(3)在垂直关系的证明中,线线垂直是问题的核心,可以根据已知的平面图形通过计算的方式(如勾股定理)证明线线垂直,也可以根据已知的垂直关系证明线线垂直考点平行与垂直的探索性问题例6如图,在四棱锥SABCD中,四边形ABCD是边长为2的菱形,ABC60,SAD为正三角形

31、侧面SAD底面ABCD,E,F分别为棱AD,BS的中点(1)求证:AF平面SEC;(2)求证:平面ASB平面CSB;(3)在棱BS上是否存在一点M,使得BD平面MAC?若存在,求eq f(BM,BS)的值;若不存在,请说明理由解(1)证明:取SC的中点G,连接FG,EG,F,G分别是BS,SC的中点,FGBC,FGeq f(1,2)BC.四边形ABCD是菱形,E是AD的中点,AEBC,AEeq f(1,2)BC,FGAE,FGAE,四边形AFGE是平行四边形,AFEG,又AF平面SEC,EG平面SEC,AF平面SEC.(2) 证明:SAD是等边三角形,E是AD的中点,SEAD,四边形ABCD是

32、菱形,ABC60,ACD是等边三角形,又E是AD的中点,ADCE,又SECEE,SE,CE平面SEC,AD平面SEC,又EG平面SEC,ADEG,又四边形AFGE是平行四边形,四边形AFGE是矩形,AFFG,又SAAB,F是BS的中点,AFBS,又FGBSF,FG平面CSB,BS平面CSB,AF平面CSB,又AF平面ASB,平面ASB平面CSB.(3)存在点M满足题意假设在棱BS上存在点M,使得BD平面MAC,连接MO,BE,则BDOM,四边形ABCD是边长为2的菱形,ABC60,SAD为正三角形,BEeq r(7),SEeq r(3),BD2OB2eq r(3),SD2,SEAD,侧面SAD

33、底面ABCD,侧面SAD底面ABCDAD,SE平面SAD,SE平面ABCD,SEBE,BSeq r(SE2BE2)eq r(10),cosSBDeq f(BS2BD2SD2,2BSBD)eq f(3r(30),20),eq f(OB,BM)eq f(3r(30),20),BMeq f(2r(10),3),eq f(BM,BS)eq f(2,3).7. (多选)如图,在直角梯形ABCD中,BCCD,AECD,且E为CD的中点,M,N分别是AD,BE的中点,将三角形ADE沿AE折起,则下列说法正确的是()A不论D折至何位置(不在平面ABC内),都有MN平面CDEB不论D折至何位置(不在平面ABC内

34、),都有MNAEC不论D折至何位置(不在平面ABC内),都有MNABD在折起过程中,一定存在某个位置,使CEAD答案ABD解析折叠后如图所示对于A,取AE的中点P,连接PM,PN,M,N分别是AD,BE的中点,PNABCE,PMDE,又PMPNP,且PM平面PMN,PN平面PMN,DECEE,平面PMN平面CDE,故MN平面CDE,故A正确;对于B,由已知,AEDE,AECE,且CEDEE,CE平面CDE,DE平面CDE,AE平面CDE,又平面PMN平面CDE,AE平面PMN,则由线面垂直的性质可知AEMN,故B正确;对于C,ABPN,MNPNN,MN与AB为异面直线,故C错误;对于D,当CA

35、ED为直二面角时,易证CE平面ADE,则根据线面垂直的性质可知CEAD,故D正确8. 如图,在三棱台ABCDEF中,CF平面DEF,ABBC.(1)设平面ACE平面DEFa,求证:DFa;(2)若EFCF2BC,试问在线段BE上是否存在点G,使得平面DFG平面CDE?若存在,确定G点的位置;若不存在,请说明理由解(1)证明:在三棱台ABCDEF中,ACDF,AC平面ACE,DF平面ACE,DF平面ACE.又DF平面DEF,平面ACE平面DEFa,DFa.(2) 线段BE上存在点G,且BGeq f(1,3)BE,使得平面DFG平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,交C

36、B的延长线于点H,连接GD,CFEF,GFCE.在三棱台ABCDEF中,ABBC,DEEF.由CF平面DEF,得CFDE.又CFEFF,CF,EF平面CBEF,DE平面CBEF,GF平面CBEF,DEGF.CEDEE,CE平面CDE,DE平面CDE,GF平面CDE.又GF平面DFG,平面DFG平面CDE.O为CE的中点,EFCF2BC,由平面几何知识易证HOCFOE,HBBCeq f(1,2)EF.由HGBFGE,可知eq f(BG,GE)eq f(HB,EF)eq f(1,2),即BGeq f(1,3)BE.1解决平行与垂直中探索性问题的主要途径(1)先猜后证,即先观察与尝试给出条件再证明(

37、2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性2涉及点的位置的探索性问题一般是先根据条件猜测点的位置再给出证明,点多为中点或三等分点中某一个,也可以根据相似知识取点考点几何法求直线与平面所成的角与二面角例7如图,AB是O的直径,PA垂直于O所在的平面,C是圆周上不同于A,B的一动点(1)证明:PBC是直角三角形;(2)若PAAB2,且当直线PC与平面ABC所成角的正切值为eq r(2)时,求直线AB与平面PBC所成角的正弦值解(1)证明:因为AB是O的直径,C是圆周上不同于A,B的一动点,所以BCAC.因为PA平面ABC,所以BCPA,又PAACA,PA,AC平面PAC,所以B

38、C平面PAC,所以BCPC,所以PBC是直角三角形(2) 如图,过A作AHPC于H,连接BH.因为BC平面PAC,AH平面PAC,所以BCAH,又PCBCC,PC,BC平面PBC,所以AH平面PBC,所以ABH是直线AB与平面PBC所成的角因为PA平面ABC,所以PCA是PC与平面ABC所成的角,因为tanPCAeq f(PA,AC)eq r(2),又PA2,所以ACeq r(2),所以在RtPAC中,AHeq f(PAAC,r(PA2AC2)eq f(2r(3),3),所以在RtABH中,sinABHeq f(AH,AB)eq f(f(2r(3),3),2)eq f(r(3),3),即直线A

39、B与平面PBC所成角的正弦值为eq f(r(3),3).9. 如图,在四棱锥PABCD中,四边形ABCD是边长为2的正方形,PBC为正三角形,M,N分别为PD,BC的中点,PNAB.(1)求三棱锥PAMN的体积;(2)求二面角MAND的正切值解(1)PBPC,N为BC的中点,PNBC,又PNAB,ABBCB,AB,BC平面ABCD,PN平面ABCD,ABBCPBPC2,PNeq r(3),M为PD的中点,VPAMNVDAMNVMADNeq f(1,2)VPADNeq f(1,4)VPABCDeq f(1,4)eq f(1,3)22eq r(3)eq f(r(3),3).(2) 如图,取DN的中

40、点E,连接ME,M,E分别为PD,DN的中点,MEPN,PN平面ABCD,ME平面ABCD,MEAN,过E作EQAN,垂足为点Q,连接MQ,又MEAN,EQMEE,AN平面MEQ,ANMQ,MQE即为二面角MAND的平面角,tanMQEeq f(ME,QE),PNeq r(3),MEeq f(r(3),2),ANDNeq r(5),AD2,QEeq f(1,2)eq f(22,r(5)eq f(2r(5),5),tanMQEeq f(r(15),4).即二面角MAND的正切值为eq f(r(15),4).10. (2021厦门模拟)如图,在五面体ABCDEF中,AB平面ADE,EF平面ADE,

41、ABCD2.(1)求证:ABCD;(2)若ADAE2,EF1,且二面角EDCA的大小为60,求二面角FBCD的大小解(1)证明:因为AB平面ADE,EF平面ADE,所以ABEF,因为AB平面CDEF,EF平面CDEF,所以AB平面CDEF.因为平面CDEF平面ABCDCD,AB平面ABCD,所以ABCD.(2)因为AB平面ADE,ABCD,所以CD平面ADE,因为AD,DE平面ADE,所以CDAD,CDDE,所以ADE为二面角EDCA的平面角,即ADE60,所以ADE为等边三角形因为ABCD,ABCDAD,CDAD,所以四边形ABCD为正方形连接AC,BD,设AC与BD的交点为O,连接OF,分

42、别取AD,BC的中点N,M,连接EN,MN,FM,则ENAD,MN过点O,MNAB.因为AB平面ADE,所以MN平面ADE,因为EN平面ADE,所以MNEN.因为MNADN,MN,AD平面ABCD,所以EN平面ABCD.因为EFABON,EF1eq f(1,2)ABON,所以四边形EFON为平行四边形,所以OFEN,所以OF平面ABCD,所以OFBC.因为OMBC,OMOFO,OM,OF平面FOM,所以BC平面FOM,所以BCFM,所以OMF即为二面角FBCD的平面角,在RtFOM中,OFENeq r(3),OM1,所以tanOMFeq f(OF,OM)eq r(3),故二面角FBCD的大小为

43、60.(1)利用综合法求空间线线角、线面角、二面角时要注意“作角、证明、计算”是一个完整的过程,缺一不可(2)斜线与平面所成的角,首先作出面的垂线,得出斜线在面内的射影,从而得出斜线与平面所成的角,转化为直角三角形求解(3)空间角中的难点是二面角,作二面角的平面角的常用方法有:定义法:根据平面角的概念直接作,如二面角的棱是两个等腰三角形的公共底边,就可以取棱的中点;垂面法:过二面角棱上一点作棱的垂面,则垂面与二面角的两个半平面的交线所成的角就是二面角的平面角或其补角;垂线法:过二面角的一个半平面内一点A作另一个半平面所在平面的垂线,得到垂足B,再从垂足B向二面角的棱作垂线,垂足为C,这样二面角

44、的棱就垂直于这两个垂线所确定的平面ABC,连接AC,则AC也与二面角的棱垂直,ACB就是二面角的平面角或其补角,这样就把问题归结为解一个直角三角形,是求解二面角最基本、最重要的方法二、核心素养提升例1(2018全国卷)如图,在平行四边形ABCM中,ABAC3,ACM90,以AC为折痕将ACM折起,使点M到达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BPDQeq f(2,3)DA,求三棱锥QABP的体积解(1)证明:由已知可得BAC90,即ABAC.又ABDA,且ACDAA,AC,DA平面ACD,所以AB平面ACD.又AB平面ABC

45、,所以平面ACD平面ABC.(2)由已知可得,DCCMABAC3,DA3eq r(2).又BPDQeq f(2,3)DA,所以BP2eq r(2).作QEAC,垂足为E,则QE綊eq f(1,3)DC.由已知及(1)可得DC平面ABC,所以QE平面ABC,QE1.因此,三棱锥QABP的体积为V三棱锥QABPeq f(1,3)QESABPeq f(1,3)1eq f(1,2)32eq r(2)sin451.例2(2022济南模拟)如图1所示,在等腰梯形ABCD中,ABCD,BAD45,AB2CD4,点E为AB的中点将ADE沿DE折起,使点A到达点P的位置,得到如图2所示的四棱锥PEBCD,点M为

46、棱PB的中点(1)求证:PD平面MCE;(2)若平面PDE平面EBCD,求三棱锥MBCE的体积解(1)证明:在题图1中,因为BEeq f(1,2)ABCD且BECD,所以四边形EBCD是平行四边形如图,连接BD,交CE于点O,连接OM,所以点O是BD的中点,又点M为棱PB的中点,所以OMPD,因为PD平面MCE,OM平面MCE,所以PD平面MCE.(2)在题图1中,因为四边形EBCD是平行四边形,所以DEBC,因为四边形ABCD是等腰梯形,所以ADBC,所以ADDE,因为BAD45,所以ADDE.所以PDDE,又平面PDE平面EBCD,平面PDE平面EBCDDE,PD平面PDE,所以PD平面E

47、BCD.由(1)知OMPD,所以OM平面EBCD,在等腰直角三角形ADE中,因为AE2,所以ADDEeq r(2),所以OMeq f(1,2)PDeq f(1,2)ADeq f(r(2),2),SBCESADE1,所以V三棱锥MBCEeq f(1,3)SBCEOMeq f(r(2),6).解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”(1)与折痕垂直的线段,翻折前后垂直关系不改变(2)与折痕平行的线段,翻折前后平行关系不改变课时作业一、单项选择题1已知m,n,l是直线,是平面,l,n,nl,m,则直线m与n的位置关系是()A异面B相交但不垂直C平行D相交且垂直

48、答案C解析因为,l,n,nl,所以n.又m,所以mn.2已知空间中两平面,直线l,则“l”是“”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件答案A解析若l且l,则;若l且,则l与平面的关系可能有l,l,l,l是的斜线,“l”是“”的充分不必要条件3在下列四个正方体中,能得出ABCD的是()ABCD答案A解析如下图:在中,BECD,AECD,BEAEE,CD平面ABE,AB平面ABE,ABCD,故正确;在中,CDAE,ABE是等边三角形,AB与CD异面,且所成角为60,故错误;在中,CDBE,ABE45,AB与CD异面,且所成角为45,故错误;在中,CDBE,tanAB

49、Eeq f(AE,BE)eq r(2),AB与CD异面,且不垂直,故错误故选A.4正方体ABCDA1B1C1D1的棱长为2,F是线段A1B1的中点,则点F到平面ABC1D1的距离为()A.eq f(r(3),3)Beq f(r(2),2)Ceq r(2)Deq r(3)答案C解析如图,连接A1D交AD1于点E,因为A1B1AB,A1B1平面ABC1D1,AB平面ABC1D1,所以A1B1平面ABC1D1,所以点F到平面ABC1D1的距离等于点A1到平面ABC1D1的距离,因为AB平面ADD1A1,A1D平面ADD1A1,所以A1DAB,因为A1DAD1,AD1ABA,所以A1D平面ABC1D1

50、,所以点A1到平面ABC1D1的距离等于A1E,因为正方体ABCDA1B1C1D1的棱长为2,所以A1Eeq f(1,2)A1Deq f(1,2)2eq r(2)eq r(2),所以点F到平面ABC1D1的距离为eq r(2).故选C.5如图,在四边形ABCD中,ADBC,ADAB,BCD45,BAD90.将ADB沿BD折起,使平面ABD平面BCD,构成三棱锥ABCD.则在三棱锥ABCD中,下列命题正确的是()A平面ABD平面ABCB平面ADC平面BDCC平面ABC平面BDCD平面ADC平面ABC答案D解析在四边形ABCD中,ADBC,ADAB,BCD45,BAD90,BDCD,又平面ABD平

51、面BDC,且平面ABD平面BDCBD,故CD平面ABD,则CDAB,又ADAB,故AB平面ADC,所以平面ABC平面ADC.故选D.6在三棱锥PABC中,D为BC的中点,PA底面ABC,ABAC,AB4,AC2,若PD与底面ABC所成角为45,则三棱锥PABC的体积为()A.eq r(5)Beq f(4r(5),3)C4eq r(5)Deq f(5r(5),4)答案B解析在三棱锥PABC中,D为BC的中点,PA底面ABC,ABAC,AB4,AC2,所以BCeq r(AB2AC2)2eq r(5),ADeq f(1,2)BCeq r(5),因为PA底面ABC,所以AD即为PD在平面ABC内的射影

52、,即PDA为PD与底面ABC所成角,又PD与底面ABC所成角为45,所以PDA45,所以PAADeq r(5),所以VPABCeq f(1,3)SABCPAeq f(1,3)eq f(1,2)42eq r(5)eq f(4r(5),3).故选B.7. 如图,在矩形ABCD中,AB2AD2a,E是AB的中点,将ADE沿DE翻折至A1DE的位置,使三棱锥A1CDE的体积取得最大值,若此时三棱锥A1CDE外接球的表面积为16,则a()A2Beq r(2)C2eq r(2)D4答案A解析当平面A1DE平面CDE时,三棱锥A1CDE的体积取得最大值,因为DCAB2AD2a,E是AB的中点,所以A1DA1

53、Ea,DECEeq r(2)a,则DC2DE2EC2,所以DEC为等腰直角三角形,且DEC90,即ECDE.因为平面A1DE平面CDE,平面A1DE平面CDEDE,CE平面CDE,所以CE平面A1DE.又DA1平面A1DE,所以DA1CE.又DA1A1E,CEA1EE,所以DA1平面A1EC,所以DA1A1C.取DC的中点O,连接OA1,OE.在RtDEC中,OEeq f(1,2)CDa,在RtDA1C中,OA1eq f(1,2)CDa,则有OEOA1OCODa,即O为外接球的球心,则球的半径为a,所以164a2,即a2.故选A.8已知矩形ABCD,AB1,AD2,点E为BC边的中点,将ABE

54、沿AE翻折,得到四棱锥BAECD,且平面BAE平面AECD,则四面体BECD的外接球的表面积为()A.eq f(7,2)B4Ceq f(9,2)D5答案B解析如图所示,取AE,DE的中点分别为G,H,连接BG,作HIBG,且HIBG,所以四边形BGHI为矩形,且HGBI1,设外接球球心为O,半径为R,因为ABBE,AGGE,所以BGAE,由平面BAE平面AECD,BG平面BAE,易知BG平面AECD,则有IH平面DEC,因为HDHE,ECD90,所以H是RtCED的外心,且易知球心O在IH上,连接OB,OE,因为AB1,AD2,所以BGIHeq f(r(2),2),EHeq f(1,2)EDe

55、q f(1,2)eq r(EC2CD2)eq f(r(2),2),且OE2OH2EH2OB2OI2BI2R2,设OHteq blc(rc)(avs4alco1(0tf(r(2),2),则有R2t2eq f(1,2)eq blc(rc)(avs4alco1(f(r(2),2)t)21,解得teq f(r(2),2),所以R1,此时点I与点O重合,外接球表面积为4R24.故选B.二、多项选择题9. 如图,AC为圆O的直径,PCA45,PA垂直于圆O所在的平面,B为圆周上不与点A,C重合的点,ASPC于S,ANPB于N,则下列说法正确的是()A平面ANS平面PBCB平面ANS平面PABC平面PAB平

56、面PBCD平面ABC平面PAC答案ACD解析PA平面ABC,PA平面PAC,平面ABC平面PAC,故D正确;B为圆周上不与A,C重合的点,AC为直径,BCAB,PA平面ABC,BC平面ABC,BCPA,又ABPAA,BC平面PAB,又BC平面PBC,平面PAB平面PBC,故C正确;ABBC,BCPA,又PAABA,BC平面PAB,BCAN,又ANPB,PBBCB,AN平面PBC,又AN平面ANS,平面ANS平面PBC,故A正确;因无法判断PBAS(或PBNS),故B不正确故选ACD.10. (2021济南模拟)如图,点P在正方体ABCDA1B1C1D1的面对角线BC1上运动,则下列结论正确的是

57、()A三棱锥AD1PC的体积不变BA1P平面ACD1CDPBC1D平面PDB1平面ACD1答案ABD解析对于A,连接AC,AD1,D1C,AP,D1P,BC1,PC,由题意知AD1BC1,从而BC1平面ACD1,故BC1上任意一点到平面ACD1的距离均相等,所以以P为顶点,面ACD1为底面,则三棱锥AD1PC的体积不变,故A正确;对于B,连接A1B,A1P,A1C1,A1C1綊AC,由A项知,AD1BC1,所以平面BA1C1平面ACD1,从而由线面平行的定义可得,A1P平面ACD1,故B正确;对于C,由于DC平面BCC1B1,所以DCBC1,若DPBC1,则BC1平面DCP,所以BC1PC,则

58、P为中点,与P为动点矛盾,故C错误;对于D,连接DB1,PD,PB1,由DB1AC且DB1AD1,可得DB1平面ACD1,从而由面面垂直的判定定理知,平面PDB1平面ACD1,故D正确三、填空题11已知圆锥的顶点为P,母线PA,PB所成角的余弦值为eq f(3,4),PA与圆锥底面所成的角为60,若PAB的面积为eq r(7),则该圆锥的体积为_答案eq f(2r(6),3)解析作示意图如图所示,设底面半径为r,PA与圆锥底面所成角为60,则PAO60,则POeq r(3)r,PAPB2r,又PA,PB所成角的余弦值为eq f(3,4),则sinAPBeq r(1blc(rc)(avs4alc

59、o1(f(3,4)2)eq f(r(7),4),则SPABeq f(1,2)PAPBsinAPBeq f(1,2)2r2req f(r(7),4)eq r(7),解得req r(2),故圆锥的体积为eq f(1,3)(eq r(2)2eq r(6)eq f(2r(6),3).12直四棱柱ABCDA1B1C1D1中,已知ABC120,四边形ABCD是边长为2的菱形,且AA14,E为线段BC上的动点,当BE_时,A1E与底面ABCD所成的角为60.答案eq f(r(21),3)1解析如图所示,连接AE,因为AA1底面ABCD,所以A1EA为A1E与底面ABCD所成的角,即A1EA60.又因为AA14,所以eq f(4,AE)tan60eq r(3),解得AEeq f(4r(3),3).设BEm(0m2),在ABE中,AB2,ABE120,AEeq f(4r(3),3),eq blc(rc)(avs4alco1(f(4r(3),3)222m222mcos120,整理得3m26m40,解得meq f(r(21),3)1.13在四面体ABCD中,DA平面ABC,ABAC,AB4,AC3,AD1,E为棱BC上一点,且平面ADE平面BCD,则DE_.答案eq f(13,5)解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论