




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-. z. . - . -可修- .目录 TOC o 1-3 u 摘要= 1 * ROMANIAbstract= 1 * ROMANI1.导论.12.数据处理与统计分析.1 2.1数据样本与变量指标.1 2.1.1数据来源.12.1.2数据处理.2 2.2统计分析.2 2.2.1相关分析.2 2.2.2初步OLS回归.3 2.2.3平稳性检验.5 2.2.4协整检验.10 2.2.5 ECM误差修正模型.11 2.2.6对回归模型的检查.11 2.2.7迭代估计法.13 2.2.8预测.143.结论.164.政策建议.16参考文献:16摘 要根据1978年2012年我国GDP和进出口贸易的相关
2、数据,本文运用协整理论和ECM误差修正模型、迭代估计法相关知识,对我国GDP和进出口贸易的关系进展检验。结果说明,1978年2012年,我国GDP和进出口贸易的相关数据之间存在长期稳定的均衡关系;通过对GDP和进出口关系的模型的估计可以看出进出口总额的增长都会带来GDP的增长,而且进口对GDP增长的解释能力较强;并且对GDP进展了2013和2014年的回归预测。因此我国应适度扩大进口,改善出口产品构造,提高出口产品质量水平,构建核心竞争力,以减少出口受国外经济环境变化而影响GDP增长的稳定。关键词:GDP;进出口;协整理论;ECM误差修正模型;AbstractAccording to the
3、1978 2012 Chinas GDP and import and e*port trade related data, by using the theory of Cointegration 、correction model of error ECM、 modified iterative estimation model, to test the relationship of GDP and the import and e*port trade. The results show that, from 1978 to 2012, there is a long-term sta
4、ble equilibrium relationship between Chinas GDP and the related data of import and e*port trade; by estimating the GDP and import & E*port relationship model can be seen in the total import and e*port volume growth will bring about the growth of GDP, and the importhas stronger ability to e*plain the
5、 growth of GDP; and the regression forecast of 2013 and 2014. Therefore, our country should be appropriate to e*pand imports, improve the structure of e*port products, improve the e*port product quality level, to build the core petitiveness, to reduce the impact of foreign economic environment chang
6、es on the growth of GDP stability.Key Words:GDP; import and e*port; cointegration theory ;correction model of error ECM;= 1 * ROMANI-. z.-. z.导论1978年以来,中国的对外经济发生了翻天覆地的变化,对外贸易成为了国民经济增长的重要推动力。目前国际上衡量一个经济大国有两条通用的硬性标准,一是年度国生产总值超过10000亿美元,二是进出口总额超过5000亿美元。由此不难看出,进出口总额充分反映了一个国家或者地区参与世界经济的程度,无论是从世界围来看,还是从中
7、国本身经历过的历史来看,将不难发现对外开放程度是一国经济水平的决定因素。因此有必要对进出口与GDP增长的关系作出定量统计分析。论文容数据样本与变量指标数据来源:选取1978-2012年的进口和出口额作为反映中国进出口情况的统计量,选取1978-2012年的GDP作为反映中国的经济增长的统计量,数据均来自中国统计年鉴 。将原数据导入到E*cel,如图2.1.1:数据的处理将原始数据中的变量进口额命名为I,出口额为E,为消除物价因素对进出口额的影响,使用商品零售价格指数以1978年为不变价格对进出口额分别进展处理(用原变量I、E分别除以相应年份的以1978年为不变价格的商品零售价格指数),修正后的
8、变量名分别为I_adjust,E_adjust;使用居民消费价格指数以1978年为不变价格对国生产总值GDP进展处理用原GDP除以以1978年为不变价格的居民消费价格指数,得到真实的GDP值,修正后的变量名为GDP_adjust。如图2.1.2:统计分析过程相关分析通过观察进口、出口、GDP的散点图图2.2.1和相关系数矩阵图2.2.2,初步可知它们之间存在着较强的相关关系。初步OLS回归估计Dependent Variable: GDP_ADJUSTMethod: Least SquaresDate: 03/14/14 Time: 10:41Sample: 1978 2012Included
9、 observations: 35VariableCoefficientStd. Errort-StatisticProb.C4886.207939.21735.2024250.0000I_ADJUST4.2963111.0953683.9222520.0004E_ADJUST-1.2090160.936483-1.2910160.2059R-squared0.972023Mean dependent var24934.71Adjusted R-squared0.970275S.D. dependent var24418.02S.E. of regression4209.905Akaike i
10、nfo criterion19.61008Sum squared resid5.67E+08Schwarz criterion19.74340Log likelihood-340.1765F-statistic555.9066Durbin-Watson stat0.692496Prob(F-statistic)0.000000通过Eviews软件分析,结果如上表2.2.1,对GDP与进出口的模型进展了估计,估计的回归模型为:GDP_adjust=4886.207+4.296311*I_adjust-1.209016*E_adjust SE: (939.2173) (1.095368) (0.9
11、36483)t-statistic: (5.202425) (3.922252) (-1.291016)模型的拟合优度R2=0.972023,调整后的R2=0.970275,回归系数的t检验在=0.05的显著性水平下显著,F=555.9066,在=0.05的显著性水平下显著Prob(F-statistic)0.05。DW=0.692,在=0.05的显著性水平下,查DW检验表可知,dl=1.34,du=1.58,4-du=2.42,4- dl=2.66,0DW dl,序列存在正自相关。进而进展怀特检验以检验是否存在异方差性:White Heteroskedasticity Test:F-stat
12、istic6.972502Probability0.000430Obs*R-squared16.86215Probability0.002056Test Equation:Dependent Variable: RESID2Method: Least SquaresDate: 03/14/14 Time: 10:47Sample: 1978 2012Included observations: 35VariableCoefficientStd. Errort-StatisticProb.C-5740439.6525670.-0.8796700.3860I_ADJUST-23897.862071
13、5.10-1.1536450.2578I_ADJUST20.6299690.5259461.1977840.2404E_ADJUST28511.1518331.371.5553200.1304E_ADJUST2-0.7154430.420545-1.7012290.0992R-squared0.481776Mean dependent var16204160Adjusted R-squared0.412679S.D. dependent var29477994S.E. of regression22591007Akaike info criterion36.83557Sum squared r
14、esid1.53E+16Schwarz criterion37.05776Log likelihood-639.6224F-statistic6.972502Durbin-Watson stat2.123779Prob(F-statistic)0.000430如表2.2.2,根据怀特检验,F-statistic=6.972502,在=0.05的显著性水平下,方程整体显著P=0.00043, Obs*R-square=16.86215,在=0.05的显著性水平下,P=0.002050.05,无法拒绝原假设,lngdp_adjust有单位根,可认为该序列非平稳,继续进展ADF检验,最后一阶差分模型
15、= 3 * ROMANIII通过检验。见图2.2.8一阶差分的ADF检验结果:Augmented Dickey-Fuller Test EquationDependent Variable: D(LNGDP_ADJUST,2)VariableCoefficientStd. Errort-StatisticProb.D(LNGDP_ADJUST(-1)-0.7340660.180811-4.0598630.0004D(LNGDP_ADJUST(-1),2)0.4067450.1730832.3499980.0261C0.0563790.0172563.2671770.0029TREND(1978
16、)0.0007590.0006961.0906050.2847R-squared0.380149Mean dependent var0.000856Adjusted R-squared0.313737S.D. dependent var0.039357S.E. of regression0.032603Akaike info criterion-3.892327Sum squared resid0.029764Schwarz criterion-3.709110Log likelihood66.27723F-statistic5.724057Durbin-Watson stat1.982486
17、Prob(F-statistic)0.003474由表2.2.3可知在=0.05的显著性水平下,统计量t=-4.059863,P远小于,不存在单位根,lngdp_adjust的一阶差分序列平稳,为一阶单整序列I(1)。同理可得,lni_adjust的一阶差分序列是平稳的,即进口序列是一阶单整的见表2.2.4。lne_adjust的一阶差分序列是平稳的,及出口序列是一阶单整的见表2.2.5。进口的ADF检验:Null Hypothesis: D(LNI_ADJUST) has a unit rootE*ogenous: Constant, Linear TrendLag Length: 0 (A
18、utomatic based on SIC, MA*LAG=12)t-StatisticProb.*Augmented Dickey-Fuller test statistic-4.2522530.0103Test critical values:1% level-4.2627355% level-3.55297310% level-3.209642*MacKinnon (1996) one-sided p-values.Augmented Dickey-Fuller Test EquationDependent Variable: D(LNI_ADJUST,2)Method: Least S
19、quaresDate: 03/14/14 Time: 11:16Sample (adjusted): 1980 2012Included observations: 33 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.D(LNI_ADJUST(-1)-0.7592520.178553-4.2522530.0002C0.1358810.0658172.0645400.0477TREND(1978)-0.0016300.002832-0.5754600.5693R-squared0.376232Mean dependen
20、t var-0.007423Adjusted R-squared0.334648S.D. dependent var0.188782S.E. of regression0.153988Akaike info criterion-0.817374Sum squared resid0.711371Schwarz criterion-0.681327Log likelihood16.48666F-statistic9.047405Durbin-Watson stat1.853212Prob(F-statistic)0.000842出口的ADF检验:Null Hypothesis: D(LNE_ADJ
21、UST) has a unit rootE*ogenous: Constant, Linear TrendLag Length: 0 (Automatic based on SIC, MA*LAG=12)t-StatisticProb.*Augmented Dickey-Fuller test statistic-5.8301620.0002Test critical values:1% level-4.2627355% level-3.55297310% level-3.209642*MacKinnon (1996) one-sided p-values.Augmented Dickey-F
22、uller Test EquationDependent Variable: D(LNE_ADJUST,2)Method: Least SquaresDate: 03/14/14 Time: 11:17Sample (adjusted): 1980 2012Included observations: 33 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.D(LNE_ADJUST(-1)-1.0677590.183144-5.8301620.0000C0.2122250.0642243.3044550.0025TREN
23、D(1978)-0.0028430.002638-1.0780280.2896R-squared0.531317Mean dependent var-0.005608Adjusted R-squared0.500072S.D. dependent var0.201351S.E. of regression0.142367Akaike info criterion-0.974315Sum squared resid0.608047Schwarz criterion-0.838269Log likelihood19.07619F-statistic17.00460Durbin-Watson sta
24、t2.020752Prob(F-statistic)0.000012协整性检验Johansen协整检验:Unrestricted Cointegration Rank Test (Trace)HypothesizedTrace0.05No. of CE(s)EigenvalueStatisticCritical ValueProb.*None *0.46039330.2347829.797070.0445At most 10.25058519.87660015.494710.0293At most 20.0107710.3573563.8414660.5500Trace test indica
25、tes 1 cointegrating eqn(s) at the 0.05 level* denotes rejection of the hypothesis at the 0.05 level*MacKinnon-Haug-Michelis (1999) p-values根据表2.2.6,检验判定:原假设None表示没有协整关系,该假设下计算的迹统计量值为30.23478,大于临界值29.79707且P值为0.0445,在=0.05的显著性水平下,可以拒绝原假设,认为至少存在一个协整关系;下一个原假设AT most 1表示最多有一个协整关系,该假设下计算的迹统计量值为19.876600,
26、小于临界值15.49471且P值0.0293,在=0.05的显著性水平下,拒绝原假设,认为至少存在两个协整关系。下一个原假设AT most 2表示最多有两个协整关系,该假设下计算的迹统计量值为0.357356,小于临界值3.841466且P值0.5500,在=0.05的显著性水平下,无法拒绝原假设,认为存在两个协整关系。用OLS法对lngdp_adjustt=c+*lni_adjust+*lne_adjust+ut进展估计,如表2.2.7: 表2.2.,7Dependent Variable: LNGDP_ADJUSTMethod: Least SquaresDate: 03/14/14 Ti
27、me: 11:24Sample: 1978 2012Included observations: 35VariableCoefficientStd. Errort-StatisticProb.C4.8146390.15115231.852880.0000LNI_ADJUST0.2611140.1952311.3374600.1905LNE_ADJUST0.3503640.1837441.9068080.0656R-squared0.979828Mean dependent var9.677309Adjusted R-squared0.978567S.D. dependent var0.9692
28、04S.E. of regression0.141891Akaike info criterion-0.985703Sum squared resid0.644255Schwarz criterion-0.852388Log likelihood20.24980F-statistic777.1788Durbin-Watson stat0.277642Prob(F-statistic)0.000000协整回归方程为:LNGDP_ADJUST=4.814639+0.261114* LNI_ADJUST+0.350364* LNE_ADJUSTSE: 0.151152 0.195231 0.1837
29、44T: (31.85288) 1.337460 1.906808 R2=0.979828 F=777.1788对上述协整回归方程做怀特检验的结果:White Heteroskedasticity Test:F-statistic6.138925Probability0.000985Obs*R-squared15.75362Probability0.003368如表2.2.8,在的显著性水平下,F-statistic=6.13892,P值=0.00远小于,模型显著。 Obs*R-squared=15.7536,P值=0.003,拒绝原假设,方程存在异方差。因此建立CM误差修正模型消除异方差。E
30、CM误差修正模型Dependent Variable: D(LNGDP_ADJUST)VariableCoefficientStd. Errort-StatisticProb.C-0.0601400.044884-1.3398790.1903D(LNI_ADJUST)0.1700840.0472083.6028550.0011D(LNE_ADJUST)-0.0181330.052569-0.3449480.7325ECM0.0091590.0029563.0981800.0042R-squared0.461612Mean dependent var0.094178Adjusted R-squa
31、red0.407773S.D. dependent var0.040229S.E. of regression0.030959Akaike info criterion-4.002196Sum squared resid0.028753Schwarz criterion-3.822624Log likelihood72.03733F-statistic8.573952Durbin-Watson stat1.360958Prob(F-statistic)0.000292根据表2.2.9:ECM形式:Estimation Equation:=D(LNGDP_ADJUST) = C(1) + C(2
32、)*D(LNI_ADJUST) + C(3)*D(LNE_ADJUST) + C(4)*ECMSubstituted Coefficients:=D(LNGDP_ADJUST) = -0. + 0.1700839636*D(LNI_ADJUST) -0.*D(LNE_ADJUST) + 0.8*ECM对回归模型的检查基于上述协整检验所得的模型:通过异方差的white检验,见下表2.2.10:White Heteroskedasticity Test:F-statistic0.517303Probability0.789971Obs*R-squared3.505529Probability0.7
33、43234在显著性水平为0.05时,P值远大于,无法拒绝原假设,认为不存在异方差性。模型的拟合程度很高,而且模型Prob(F-statistic)远小于是显著的,但检验出出口变量的系数不显著,可能存在多重共线性。通过观察相关系数矩阵图2.2.9,进口与出口是中度线性相关的,所以当进出口同时解释GDP时,出口变得不显著。GDP对进口的ECM修正模型,见表2.2.11:Dependent Variable: D(LNGDP_ADJUST)VariableCoefficientStd. Errort-StatisticProb.C-0.0791820.049635-1.5952860.1208D(L
34、NI_ADJUST)0.1585950.0355014.4673380.0001ECM0.0128670.0041233.1209270.0039R-squared0.451019Mean dependent var0.094178Adjusted R-squared0.415600S.D. dependent var0.040229S.E. of regression0.030753Akaike info criterion-4.041535Sum squared resid0.029319Schwarz criterion-3.906856Log likelihood71.70609F-s
35、tatistic12.73410Durbin-Watson stat1.328390Prob(F-statistic)0.000092Substituted Coefficients:=D(LNGDP_ADJUST) = -0. + 0.1585947675*D(LNI_ADJUST) + 0.*ECMGDP对出口的ECM修正模型,见表2.2.12:Dependent Variable: D(LNGDP_ADJUST)VariableCoefficientStd. Errort-StatisticProb.C-0.0576130.056676-1.0165430.3172D(LNE_ADJUS
36、T)0.1060660.0468742.2627560.0308ECM0.0109430.0043792.4988420.0180R-squared0.230296Mean dependent var0.094178Adjusted R-squared0.180638S.D. dependent var0.040229S.E. of regression0.036415Akaike info criterion-3.703594Sum squared resid0.041107Schwarz criterion-3.568915Log likelihood65.96109F-statistic
37、4.637617Durbin-Watson stat1.089222Prob(F-statistic)0.017299Substituted Coefficients:=D(LNGDP_ADJUST) = -0. + 0.1060655395*D(LNE_ADJUST) + 0.*ECM由于存在多重共线性,且GDP对进口的模型数据拟合较好,但查阅资料和相关数据发现我国GDP的开展很大程度也取决于出口,因此,将GDP分别对进口和出口进展拟合,从各自的模型来分析GDP与进口、出口的关系。由于是时间序列,应该检验模型的自相关性。在的显著性水平下,GDP与进口模型的DW=1.33,与出口模型的DW=1
38、.089,查DW检验表可知,dl=1.4,du=1.52,4-du=2.48,4- dl=2.6,0DW dl ,两个模型均存在正自相关。运用广义差分法对模型进展修正。Cochrane-Orcutt迭代估计法GDP与进口的模型,见表2.2.13:Dependent Variable: D(LNGDP_ADJUST)VariableCoefficientStd. Errort-StatisticProb.C-0.0621920.080054-0.7768800.4435D(LNI_ADJUST)0.1328800.0362923.6613770.0010ECM0.0116500.0066601.
39、7493620.0908AR(1)0.3740390.1833802.0396980.0506R-squared0.517308Mean dependent var0.094317Adjusted R-squared0.467374S.D. dependent var0.040844S.E. of regression0.029809Akaike info criterion-4.074822Sum squared resid0.025768Schwarz criterion-3.893427Log likelihood71.23457F-statistic10.35991Durbin-Wat
40、son stat1.663102Prob(F-statistic)0.000084Inverted AR Roots0.37新的GDP与进口模型:D(LNGDP_ADJUST) = -0. + 0.1328801672*D(LNI_ADJUST) + 0.*ECM SE: 0.080054 0.036292 0.00666T: (-0.776880) (3.661377) (1.749362)R2=0.467374 F=10.35991在的显著性水平下,参数与模型都是显著的。通过怀特检验,模型不存在异方差。DW=1.663,查DW检验表可知,dl=1.4,du=1.52,4-du=2.48,4- dl=2.6,du DW4-du,消除了自相关性。Dependent Variable: D(LNGDP_ADJUST)VariableCoefficientStd. Errort-StatisticProb.C-0.0422080.100021-0.4219930.6761D(LNE_ADJUST)0.0835570.0380772.1944080.0364ECM0.0098230.0078261.2552020.2194
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 技术服务合同协议
- 基于农业资源整合的现代农业发展协议
- 项目进度统计表-互联网项目进度监控
- 公司前台接待与咨询工作表格
- 以科技创新推动农业现代化智能化发展的路径探索
- 历史文物保护修复技术考试试题集
- 山中访友:六年级自然美文欣赏教案
- 员工培训与技能评估记录表
- 医院场地租赁合同
- 中国古诗词故事的欣赏感受
- 城市合伙人合同协议书
- 律所委托鉴定机构鉴定的委托书
- 2024年胰岛素泵行业前景分析:胰岛素泵行业发展趋势提升服务水平
- 机床夹具设计实例
- 福建省泉州市第五中学2023-2024学年八年级下学期期中语文试题
- 2024CSCO恶性肿瘤患者营养治疗指南解读
- 产后出血预防与处理
- 智能化仓储冷库项目可行性研究报告
- 通达信公式函数说明大全
- 2024年辅警招聘考试试题库含完整答案(各地真题)
- 柏子养心丸神经保护机制
评论
0/150
提交评论