




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数性质的综合应用一、概念与判断 奇偶性:(二)、具有奇偶性的函数的性质1、定义域关于原点对称2、奇函数在关于原点对称的区间上单调性相同,偶函数相反。3、在公共定义域内两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数两个偶函数的和函数、积函数是偶函数一个奇函数,一个偶函数和积函数是奇函数4、若奇函数f(x)在x=0处有定义,则f(0)=05、奇函数图象关于原点对称,偶函数图象关于y轴对称周期性单调性(三)常见函数的单调性(略)(二)用定义证明函数的单调性的步骤1、取值,2、做差,3、整理,4、判断(四)复合函数的单调性:同增异减对称性轴对称定理1.若函数y=f(x)定义域为R,且满足条件
2、:f(a+x)=f(bx),则函 数y=f(x)的图象关于直线 对称推论1.若函数y=f(x)定义域为R,且满足条件:f(a+x)=f(ax) (或f(2ax)=f(x),则函数y=f(x)的图像关于直线x=a对称。 推论2.若函数y=f(x)定义域为R,且满足条件:f(a+x)=f(ax), 又若方程f(x)=0有n个根,则此n个根的和为na。定理2:若函数y=f(x)定义域为R,且满足条件:f(a+x)+f(bx)=c(a,b,c为常数), 则函数y=f(x) 的图象关于点 对称。 推论1.若函数y=f(x)定义域为R,且满足条件:f(a+x)+f(ax)=0,(a为常数), 则函数y=f
3、(x)的图象关于点(a,0)对称。 注:可从函数的奇偶性角度,或具体图像解析各性质之间的关系对称性与周期性1、定义在R上的函数,若有两个对称轴x=a,x=b,则 是其一个周期析:由已知可知:f(2a+x)=f(x)且,f(2b+x)=f(x),所以f(2a+x)=f(2b+x)即f(x +2b+2a-2b)=f(2b+x)即:f(x+2a-2b)=f(x)故 是其一个周期2、定义在R上的函数,若有两个对称中心 ,则 是其一个周期奇偶性与对称性典型例题:类型 1:函数性质基本应用类型2:与零点有关的问题yx024611/2-1/23类型3:性质综合应用类型4:抽象函数分析:已知条件中有所以可以类比联想到指数函数又因为条件中有是所以满足条件的函数的一个模型为。此不等式可变为即若此题为选
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国聚苯硫醚市场十三五规划及投资风险评估报告
- 2025-2030年中国稀土磁钢行业运营状况与发展潜力分析报告
- 2025-2030年中国祛斑养颜保健品行业运行状况及前景趋势分析报告
- 2025-2030年中国电脑电源市场运行动态与营销策略研究报告
- 2025-2030年中国电子驻车制动器EPB市场运营状况与发展潜力分析报告
- 邢台学院《工程结构抗震设计原理》2023-2024学年第二学期期末试卷
- 湖北民族大学《数据库原理及应用》2023-2024学年第二学期期末试卷
- 云南师范大学《电力系统分析》2023-2024学年第二学期期末试卷
- 武汉科技职业学院《动物试验设计与统计分析》2023-2024学年第二学期期末试卷
- 四川艺术职业学院《针灸学(实验)》2023-2024学年第二学期期末试卷
- 高考英语单词3500分类记忆(精编版)
- 林规发〔2016〕58号防护林造林工程投资估算指标
- 非公开发行公司债券的法律意见书模版
- 汽车空调技术与维修教案
- 企业管理概论-课件全书课件完整版ppt全套教学教程最全电子教案电子讲义(最新)
- 餐饮服务食品安全监督量化分级动态等级评定检查表
- 北师大版语文选修《萧萧》ppt课件1
- 大学生职业素养课件-5第五单元学会有效沟通-PPT课件
- 《谈骨气》课文阅读(共2页)
- 病原生物与免疫学(中职)绪论PPT课件
- 新起点小学英语一年级上册单词卡片(共23页)
评论
0/150
提交评论