2019年小学六年级数学上册概念知识总结_第1页
2019年小学六年级数学上册概念知识总结_第2页
2019年小学六年级数学上册概念知识总结_第3页
2019年小学六年级数学上册概念知识总结_第4页
2019年小学六年级数学上册概念知识总结_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小学六年级数学上册概念知识总结第一单元 位置1.方格表中,竖排叫做列;横排叫做行。2.找位置要先列后行,写位置先写第几列,再写第几行,格式为:(列,行)。 第二单元 分数乘法概念总结1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。例如: 5的意义是:表示求5个 连加的和的简便运算。2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。例如:5 的意义是:表示求5的 是多少。

2、 0.8 的意义是:表示求0.8的 是多少。4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。6.乘积是1的两个数互为倒数。1的倒数是1;0没有倒数。7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。8.一个数(0除外)乘以一个真分数,所得的积小于它本身。例如: 15 14 。10一个数(0除外)乘以一个带分数,所得的积大于它本身。例如:362 36 。11分数解决问题的一

3、般解题步行骤。(1)找出含有分率的关键句。(2)找出单位“1”的量。(注意单位“1”的量也称为“标准量”, 几分之几相对应的量也称为 “比较量”)(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。(4)根据线段图写出等量关系式:标准量对应分率=比较量。(即:单位“1”的量几分之几=几分之几相对应的量)(5)根据已知条件和问题列式解答。13乘法解决问题有关注意的概念。(1)乘法解决问题的解题思路:已知一个数,求这个数的几分之几是多少?(用乘法算)(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。(3)甲

4、比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。(4)江氏规则:多比少多,少比多少。例如:8比5多,6比9少。在解决问题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占

5、”、“是”、“等于”意思相近。(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、 “甲比乙少几分之几”的形式。(7)在乘法解决问题中,单位“1”是已知的。(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。(9)分率与量要对应。多的比较量对多的分率; 少的比较量对少的分率; 增加的比较量对增加的分率;减少的比较量对减少的分率; 提高的比较量对提高的分率; 降低的比较量对降低的分率;工作总量的比较量对工作总量的分率; 工作效率的比较量对工作效率的分率;部分的比较量对部分的分率; 总量的比较量对总量

6、的分率;2019年小学六年级数学上册概念知识总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。例如: 表示:已知两个数的积是 与其中一个因数是 ,求另一个因数是多少。2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘这个分数的倒数。3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘分数的倒数。4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。5.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关

7、系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。6比值通常用分数、小数和整数表示。7比的后项不能为0。8同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商;9根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。10比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。11在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。12一个数(0除外)除以一个真分数,所得的商大于它本身。13一个数(0除外)除以一个假分数,所得的商小于或等于它本身。14一

8、个数(0除外)除以一个带分数,所得的商小于它本身。【分数四则混合运算和应用题概念总结】1分数四则混合运算的顺序与整数四则混合运算的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。2在分数四则混合运算中,可以应用运算定律使计算简便。运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。3解分数应用题注意事项:与第二单元相同。第四单元 圆概念总结1圆的定义:圆是平面上的一种曲线图形。2将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一

9、点的距离都相等3半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4圆心确定圆的位置,半径确定圆的大小。5直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。6在同一个圆内或等圆,所有的半径都相等,所有的直径都相等。7在同一个圆内或等圆,有无数条半径,有无数条直径。8在同一个圆内或等圆,直径的长度是半径的2倍,半径的长度是直径的一半。 用字母表示为:dr 或 d=2r r 或r=d r=d29 圆的周长:围成圆的曲线的长度叫做圆的周长。10圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值

10、叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取 3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。11圆的周长公式:C=d 或C=2r12、圆的面积:圆所占平面的大小叫圆的面积。13把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长宽,所以圆的面积=rr。14圆的面积公式:或者S= ( ),S= (d2)或者S=(C2)15在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。16在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。17一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=R 或S=(R

11、)。(其中Rr环的宽度)18环形的周长外圆周长内圆周长19半圆的周长等于圆的周长的一半加直径。 半圆的周长公式:d 2d或者r2r 或者d d20半圆面积圆的面积2公式为: 221在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 例如:在同一个圆里,半径扩大倍,那么直径和周长就都扩大倍,而面积扩大倍。22两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 例如:两个圆的半径比是:,那么这两个圆的直径比和周长比都是:,而面积比是:。23当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加厘米。2

12、4在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几25当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。26扇形弧长公式:d360n 扇形的面积公式: S= 360n(n为扇形的圆心角度数,r为扇形所在圆的半径)27轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 28只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 有无数条对称轴的图形

13、是:圆、圆环。 29直径所在的直线是圆的对称轴。 第五单元百分数概念总结 1百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。2百分数的意义:表示一个数是另一个数的百分之几。 例如:25的意义:表示一个数是另一个数的25。3百分数通常不写成分数形式,而在原来分子后面加上“”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。4小数与百分数互化的规则: 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 把百分数化成小数,只要把百分号去掉,同时把小数点向左移

14、动两位。5百分数与分数互化的规则: 把分数化成百分数,通常先把分数化成小数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。6百分率公式: 合格率合格数/总数100% 发芽率发芽数/总数100% 出勤率出勤人数/总人数100% 【注意:百分数解决问题的解题方法与分数乘、除法解决问的解题方法相同。】7纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。8纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全。9纳税的种类:将纳税主要分为增值税、消费税、营

15、业税、个人所得税等几类。10应纳税额:缴纳的税款叫应纳税额。11税率:应纳税额与各种收入的比率叫做税率。12应纳税额的计算:应纳税额各种收入税率13储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。14存款的类型:存款分为活期、整存整取、零存整取等方式。15本金:存入银行的钱叫做本金。16利息:取款时银行多支付的钱叫做利息。17国家规定,存款的利息要按5的税率纳税。国债和教育存款的利息不纳税。18利率:利息与本金的比值叫做利率。19银行存款税后利息的计算公式:利息本金利率时间(5)20银行存款利息的税金利

16、息5或银行存款利息的税金本金利率时间521国债利息的计算公式:利息本金利率时间22本息:本金与利息的总和叫做本息。第六单元 统计条形统计图、折线统计图和扇形统计图的特点和作用。条形统计图:很容易看出各种数量的多少。折线统计图:可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。扇形统计图:很清楚地表示各部分数量同总数之间的关系。第七单元 鸡兔同笼公式1.设总只数为兔:(兔的脚数总只数总脚数)(兔的脚数鸡的脚数)鸡的只数 总只数鸡的只数=兔的只数小学六年级数学上册概念知识总结第一单元 位置1.方格表中,竖排叫做列;横排叫做行。2.找位置要先列后行,写位置先写第几列,再写第几行,格式为:

17、(列,行)。第二单元 分数乘法概念总结1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。例如: 5的意义是:表示求5个 连加的和的简便运算。2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。 例如:5 的意义是:表示求5的 是多少。 0.8 的意义是:表示求0.8的 是多少。 4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。5.整数乘法的交

18、换律、结合律和分配律,对分数乘法同样适用。6.乘积是1的两个数互为倒数。1的倒数是1;0没有倒数。7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。8.一个数(0除外)乘以一个真分数,所得的积小于它本身。例如: 15 14 。10一个数(0除外)乘以一个带分数,所得的积大于它本身。例如:362 36 。11分数解决问题的一般解题步行骤。(1)找出含有分率的关键句。(2)找出单位“1”的量。(注意单位“1”的量也称为“标准量”, 几分之几相对应的量也称为 “比较

19、量”)(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。(4)根据线段图写出等量关系式:标准量对应分率=比较量。(即:单位“1”的量几分之几=几分之几相对应的量)(5)根据已知条件和问题列式解答。13乘法解决问题有关注意的概念。(1)乘法解决问题的解题思路:已知一个数,求这个数的几分之几是多少?(用乘法算)(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少的数占乙的几分之几。(4)江氏规则:多比少多,少比多少。例如:8比

20、5多,6比9少。在解决问题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员” 等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、

21、“甲比乙少几分之几”的形式。(7)在乘法解决问题中,单位“1”是已知的。(8)单位“1”不同的两个分率不能相加减,加减属相差比,始终遵循“凡是比较,单位一致”的规则。 (9)分率与量要对应。多的比较量对多的分率; 少的比较量对少的分率; 增加的比较量对增加的分率;减少的比较量对减少的分率; 提高的比较量对提高的分率; 降低的比较量对降低的分率;工作总量的比较量对工作总量的分率; 工作效率的比较量对工作效率的分率;部分的比较量对部分的分率; 总量的比较量对总量的分率;第三单元 分数除法概念总结1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数

22、的运算。 例如: 表示:已知两个数的积是 与其中一个因数是 ,求另一个因数是多少。 2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘这个分数的倒数。3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘分数的倒数。4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。5.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。从应用的角度理解,比可以分为同类量比和不同类量比;同类量比表示倍数关系,比的前项和后项必须单位一致;不同类量比的结果产生新的量,比的前项和后项的单位不相同。 6比值通常用分数、小数和整数表示。 7比的后项不能为0。

23、8同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商; 9根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 10比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 11在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 12一个数(0除外)除以一个真分数,所得的商大于它本身。 13一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 14一个数(0除外)除以一个带分数,所得的商小于它本身。【分数四则混合运算和应用题概念总结】 1分数四则混合运算的顺序与整数四则混合运算

24、的运算顺序相同。在有一级运算和二级运算的计算中,要先算二级运算再算一级运算,即:先乘除后加减。在同级运算中,应按从左到右的顺序依次计算。 2在分数四则混合运算中,可以应用运算定律使计算简便。运算定律包括:加法的交换律、加法的结合律、乘法的交换律、乘法的结合律、乘法的分配律。 3解分数应用题注意事项:与第二单元相同。第四单元 圆概念总结 1圆的定义:圆是平面上的一种曲线图形。 2将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等 3半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆

25、的半径。 4圆心确定圆的位置,半径确定圆的大小。 5直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。 6在同一个圆内或等圆,所有的半径都相等,所有的直径都相等。 7在同一个圆内或等圆,有无数条半径,有无数条直径。 8在同一个圆内或等圆,直径的长度是半径的2倍,半径的长度是直径的一半。 用字母表示为:dr 或 d=2r r 或r=d r=d2 9 圆的周长:围成圆的曲线的长度叫做圆的周长。 10圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取 3.14。世界上第一个把圆周率算出来的

26、人是我国的数学家祖冲之。 11圆的周长公式:C=d 或C=2r 12、圆的面积:圆所占平面的大小叫圆的面积。 13把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径,因为长方形的面积=长宽,所以圆的面积=rr。 14圆的面积公式:或者S= ( ),S= (d2)或者S=(C2) 15在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。 16在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。 17一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=R 或S=(R)。(其中Rr环的宽度) 18环形的周长外圆周长内圆周长 19半圆的周长等于圆的周长的一半

27、加直径。 半圆的周长公式:d 2d或者r2r 或者d d 20半圆面积圆的面积2公式为: 2 21在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。 例如:在同一个圆里,半径扩大倍,那么直径和周长就都扩大倍,而面积扩大倍。 22两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。 例如:两个圆的半径比是:,那么这两个圆的直径比和周长比都是:,而面积比是:。23当一个圆的半径增加厘米时,它的周长就增加厘米;当一个圆的直径增加厘米时,它的周长就增加厘米。24在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对

28、的弧就占圆周长的几分之几25当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小。26扇形弧长公式:d360n 扇形的面积公式: S= 360n(n为扇形的圆心角度数,r为扇形所在圆的半径)27轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。 28只有1一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。 只有2条对称轴的图形是:长方形 只有3条对称轴的图形是:等边三角形 只有4条对称轴的图形是:正方形; 有无数条对称轴的图形是:圆、圆环。 29直径所在的直线是圆的对称轴。 第五单元百分数概念总结 1百分

29、数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。 百分数表示两个数之间的比率关系,不表示具体的数量,无单位名称。 2百分数的意义:表示一个数是另一个数的百分之几。 例如:25的意义:表示一个数是另一个数的25。 3百分数通常不写成分数形式,而在原来分子后面加上“”来表示。分子部分可为小数、整数,可以大于100,小于100或等于100。 4小数与百分数互化的规则: 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 5百分数与分数互化的规则: 把分数化成百分数,通常先把分数化成小

30、数(除不尽的保留三位小数),再把小数化成百分数; 把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 6百分率公式: 合格率合格数/总数100% 发芽率发芽数/总数100% 出勤率出勤人数/总人数100% 【注意:百分数解决问题的解题方法与分数乘、除法解决问的解题方法相同。】 7纳税:纳税是根据国家各种税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。 8纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全。 9纳税的种类:将纳税主要分为增值税、消费税、营业税、个人所得税等几类。 10应纳税额:缴纳的税款叫应纳税额。

31、11税率:应纳税额与各种收入的比率叫做税率。 12应纳税额的计算:应纳税额各种收入税率 13储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。 14存款的类型:存款分为活期、整存整取、零存整取等方式。 15本金:存入银行的钱叫做本金。 16利息:取款时银行多支付的钱叫做利息。 17国家规定,存款的利息要按5的税率纳税。国债和教育存款的利息不纳税。 18利率:利息与本金的比值叫做利率。 19银行存款税后利息的计算公式:利息本金利率时间(5) 20银行存款利息的税金利息5或银行存款利息的税金本金利率时间5 2

32、1国债利息的计算公式:利息本金利率时间 22本息:本金与利息的总和叫做本息。第六单元 统计条形统计图、折线统计图和扇形统计图的特点和作用。条形统计图:很容易看出各种数量的多少。折线统计图:可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。扇形统计图:很清楚地表示各部分数量同总数之间的关系。第七单元 鸡兔同笼公式1.设总只数为兔:(兔的脚数总只数总脚数)(兔的脚数鸡的脚数)鸡的只数 总只数鸡的只数=兔的只数2.设总只数为鸡:( 总脚数鸡的脚数总只数)(兔的脚数鸡的脚数)兔的只数 总只数兔的只数=鸡的只数2.设总只数为鸡:( 总脚数鸡的脚数总只数)(兔的脚数鸡的脚数)兔的只数 总只数兔

33、的只数=鸡的只数附送:2019年小学六年级数学上册知识点归纳第一单元:位置1、用数对确定点的位置,第一个数表示列,第二个数表示行。如(3,5)表示(第三列,第五行)2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变第二单元 分数乘法一、分数乘法的意义:2、分数乘分数是求一个数的几分之几是多少。例如:表示求的四分之一是多少。1、分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。例如:5表示求5个的和是多少?二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

34、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。四、分数混合运算的运算顺序和整数的运算顺序相同。五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律: a b = b a乘法结合律: ( a b )c = a ( b c ) 乘法分配律: ( a + b )c = ac + bc六、分数

35、乘法的解决问题(一)(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数几分之几1、找单位“1”: 在分数句中分数的前面; 或 “占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的” 相当于 “” “占”、“是”、“比”相当于“ = ”(2)分数前是“的”: 单位“1”的量分数=具体量(3)分数前是“多或少”的意思: 单位“1”的量(1-分数)=具体量;单位“1”的量(1+分数)=具体量(已知具体量求单位“1”的量,用除法)(二)、倒数 1、倒数的意义: 乘积是1的两个数互为倒数。1的倒数是1; 0没有倒数。强调:

36、互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数: 把小数化为分数,再求倒数。3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。第三单元:分数除法一、分数除法1、分数除法的意义:分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。乘法: 因数 因数

37、 = 积 除法: 积 一个因数 = 另一个因数2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。分数除法比较大小时规律:当除数大于1,商小于被除数;当除数小于1(不等于0),商大于被除数;当除数等于1,商等于被除数。“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。二、分数除法解决问题三、比和比的应用1、两个数相除又叫做两个数的比。在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0.例如 15 :10 = 1510=3/2(比值通常用分数表示,也可以用小数或整数表

38、示)2、比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例: 路程速度=时间。3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。比值:相当于商,是一个数,可以是整数,分数,也可以是小数。4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1

39、、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。根据比的基本性质,把比化成最简整数比。3.化简比:(2)用求比值的方法。注意: 最后结果要写成比的形式。如: 1510 = 1510 = 3/2 = 325.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。第四单元 圆的认识(一) 1.圆中心的一点叫圆心,用O表示.

40、一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.2.圆有无数条半径,有无数条直径.3.圆心决定圆的位置,半径决定圆的大小.4.把圆对折,再对折就能找到圆心.5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.6.在同一个圆里,直径的长度是半径的2倍,可以表示为d2r或rd/2.7.圆一周的长度就是圆的周长.半圆的周长等于圆周长的一半加一条直径。8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母表示,计算时通常取3.14.Cd或C2r.13.14 26.28 39.42 412.56 515.7 618.84 721.9

41、8 825.12 928.26 1031.49.用S表示圆的面积, r表示圆的半径,那么S S环 10.周长相等时,圆的面积最大.面积相等时,圆的周长最小.第五单元:百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。2、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。区别:、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数

42、。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。2、分数化成百分数: 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(三)常见的分数与小数、百分数之间的互化三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达

43、到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%。)(二)、折扣:商品按原定价格的百分之几出售,叫做折扣。通称“打折”。几折就表示十分之几,也就是百分之几十。例如八折=0.8=80,六折五=0.65=652、成数:一成是十分之一,也就是10%。三成五就是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。2、纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。缴纳的税款叫做应纳税额。

44、应纳税额与各种收入的比率叫做税率。应纳税额 = 总收入 税率(四)利息 1、存款分为活期、整存整取和零存整取等方法。2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。3、存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。利息=本金利率时间注意:如要上利息税,则:税后利息=利息(1-利息税率)国债和教育存款的利息不纳税第六单元:统计一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比。二、常用统计图的优

45、点:1、条形统计图:可以清楚的看出各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)第七单元:数学广角一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。二、“鸡兔同笼”问题的解题方法1、列表猜测法2、假设法 (1) 假如都是兔 (2) 假如都是鸡 (3) 古人“抬脚法”:3

46、、列方程法4、公式法:【鸡兔问题公式】 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一 (100-236)(4-2)=14(只)兔; 36-14=22(只)鸡。 解二 (436-100)(4-2)=22(只)鸡; 36-22=14(只)兔。 (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数总头数-脚数之差)

47、(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数

48、。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?” 解一 (41000-3525)(4+15) =47519=25(个) 解二 1000-(151000+3525)(4+15) 1000-1852519 =1000-975=25(个)(答略) “得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元

49、。它的解法显然可套用上述公式。) (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式: (两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数; (两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。 例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?” 解 (52+44)(4+2)+(52-44)(4-2)2 =202=10(只)鸡 (52+44)(4+2)-(52-44)(4-2)2 =122=6(只)兔(答略) 基本概念:行程问题是研究物体运动的,它研

50、究的是物体速度、时间、行程三者之间的关系。 基本公式:路程速度时间;路程时间速度;路程速度时间 关键问题:确定行程过程中的位置 相遇问题:速度和相遇时间相遇路程(请写出其他公式) 追击问题:追击时间路程差速度差(写出其他公式) 流水问题:顺水行程(船速水速)顺水时间 逆水行程(船速水速)逆水时间 顺水速度船速水速 逆水速度船速水速 静水速度(顺水速度逆水速度)2 水 速(顺水速度逆水速度)2 流水问题:关键是确定物体所运动的速度,参照以上公式。 过桥问题:关键是确定物体所运动的路程,参照以上公式。 仅供参考: 【和差问题公式】 (和+差)2=较大数; (和-差)2=较小数。 【和倍问题公式】

51、和(倍数+1)=一倍数; 一倍数倍数=另一数, 或 和-一倍数=另一数。 【差倍问题公式】 差(倍数-1)=较小数; 较小数倍数=较大数, 或 较小数+差=较大数。 【平均数问题公式】 总数量总份数=平均数。 【一般行程问题公式】 平均速度时间=路程; 路程时间=平均速度; 路程平均速度=时间。 【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答: (速度和)相遇(离)时间=相遇(离)路程; 相遇(离)路程(速度和)=相遇(离)时间; 相遇(离)路程相遇(离)时间=速度和。 【同向行程问题公式】 追

52、及(拉开)路程(速度差)=追及(拉开)时间; 追及(拉开)路程追及(拉开)时间=速度差; (速度差)追及(拉开)时间=追及(拉开)路程。 【列车过桥问题公式】 (桥长+列车长)速度=过桥时间; (桥长+列车长)过桥时间=速度; 速度过桥时间=桥、车长度之和。 【行船问题公式】 (1)一般公式: 静水速度(船速)+水流速度(水速)=顺水速度; 船速-水速=逆水速度; (顺水速度+逆水速度)2=船速; (顺水速度-逆水速度)2=水速。 (2)两船相向航行的公式: 甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度 (3)两船同向航行的公式: 后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。 (求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。 【工程问题公式】 (1)一般公式: 工效工时=工作总量; 工作总量工时=工效; 工作总量工效=工时。 (2)用假设工作总量为“1”的方法解工程问题的公式: 1工作时间=单位时间内完成工作总量的几分之几; 1单位时间能完成的几分之几=工作时间。 (注意:用假设法解工程题,可任意假定工作总量为2、3、4、5。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。) 【盈亏问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论