下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高考解答题专项三数列1.(2021山东滨州一模)已知等差数列an和等比数列bn满足a1=2,b2=4,an=2log2bn.(1)求数列an,bn的通项公式;(2)设数列an中不在数列bn中的项按从小到大的顺序构成数列cn,记数列cn的前n项和为Sn,求S100.解:(1)设等差数列an的公差为d,因为b2=4,所以a2=2log2b2=4,所以d=a2-a1=2.所以an=2+(n-1)2=2n.又an=2log2bn,即2n=2log2bn,所以n=log2bn,所以bn=2n.(2)由(1)得bn=2n=22n-1=a2n-1,即bn是数列an中的第2n-1项.设数列an的前n项和为Pn
2、,数列bn的前n项和为Qn,因为b7=a26=a64,b8=a27=a128,所以数列cn的前100项是由数列an的前107项去掉数列bn的前7项后构成的,所以S100=P107-Q7=107(2+214)22-281-2=11 302.2.(2021广东汕头三模)已知数列an的前n项和为Sn,数列Snn是首项为12,公差为14的等差数列,若x表示不超过x的最大整数,如0.5=0,lg 499=2.(1)求数列an的通项公式;(2)若bn=lg an,求数列bn的前2 021项的和.解:(1)数列Snn是首项为12,公差为14的等差数列,所以Snn=12+(n-1)14=n+14,得Sn=n2
3、+n4,当n=1时,a1=S1=12,当n2时,an=Sn-Sn-1=n2+n4(n-1)2+n-14=n2,又a1=12也适合上式,所以an=n2.(2)由(1)得bn=lg an=lgn2,当n=1时,-1lg a10;当n=2,3,4,19时,0lg an1;当n=20,21,22,199时,1lg an2;当n=200,201,202,1 999时,2lg an3;当n=2 000,2 001,2 021时,3lg an4.故数列bn的前2 021项和为lg a1+lg a2+lg a3+lg a2 021=-1+018+1180+21 800+322=3 845.3.(2021四川成
4、都七中高三月考)设等差数列an的前n项和为Sn,已知a2=3,且S5=4a3+5.(1)求an的通项公式;(2)若1a1a2+1a2a3+1anan+11m-1对nN+都成立,求实数m的取值范围.解:(1)(方法1)设数列an的公差为d,则a2=a1+d=3,5a1+10d=4(a1+2d)+5,解得a1=1,d=2.故an的通项公式为an=2n-1.(方法2)S5=5(a1+a5)2=5a3,又S5=4a3+5,则a3=5.公差为a3-a2=2,故an的通项公式为an=a2+(n-2)2=2n-1.(2)由(1)得1anan+1=1(2n-1)(2n+1)=1212n-112n+1,k=1n
5、1akak+1=121-13+1315+12n-112n+1=121-12n+112,由题设不等式恒成立,有1m-112,解得11),a1=1,数列bn满足bn+1-bn=an+1-,b1=1-1.(1)求数列bn的通项公式;(2)规定:x表示不超过x的最大整数,如-1.2=-2,2.1=2.若=2,cn=1bn+2n-2,记Tn=c1+c2+c3+cn(n2),求Tn2-2Tn+2Tn-1的值,并指出相应n的取值范围.解:(1)由题意得an=n-1(1),则bn+1-bn=n-(1),当n2时,bn=(bn-bn-1)+(bn-1-bn-2)+(b2-b1)+b1=(n-1-)+(n-2-)
6、+(1-)+1-1=(n-1+n-2+1)-(n-1)+1-1=n-1-n+-1,又b1=1-1符合上式,因此bn=n-1-n+-1.(2)由(1)知,当=2时,bn=2n-2n+1,则cn=1bn+2n-2=12n-10.当n=2时,T2=c1+c2=43,此时Tn2-2Tn+2Tn-1=103=3;当n=3时,T3=c1+c2+c3=3121,此时Tn2-2Tn+2Tn-1=1021+110+2=2.当n3时,TnT3,因为cn=12n-132n+1(n2),所以Tn1+3123+124+12n+1=1+3181-(12)n-11-12=1+341-12n-174,因此T3Tn74,即Tn3121,74,令x=Tn-1,则x1021,34,Tn2-2Tn+2Tn-1=Tn-1+1Tn-1=x+1x,利用对勾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专业工程中介服务协议模板汇编版B版
- 2024劳务安全生产协议书
- 2024城市公共厕所翻新工程协议样本版
- 房屋土地买卖合同2024年度重庆市渝中区2篇
- 江南大学《工程材料基础》2021-2022学年第一学期期末试卷
- 佳木斯大学《油画静物》2021-2022学年第一学期期末试卷
- 2024年专业交通违规车辆紧急拖移服务合同版
- 全新智慧城市整体解决方案合同(2024版)2篇
- 2024年外墙保温一体化板材施工合作合同版B版
- 暨南大学《涉外经济法》2021-2022学年第一学期期末试卷
- 2024-2030年中国色氨酸行业发展态势及投资价值评估报告
- 中小学校保安服务方案(技术方案)
- 小标题式作文公开课获奖课件省赛课一等奖课件
- 24秋国家开放大学《公共关系学》实训任务(5)答案
- 海南省海口市海南省华侨中学2024-2025年八年级上期中考试物理试题(含答案)
- 2.2.3 氯气的实验室制法 课件 高一上学期化学人教版(2019)必修第一册
- 苏教版(2024新版)七年级上册生物期末模拟试卷 3套(含答案)
- 赛力斯招聘在线测评题
- 冬季传染病预防-(课件)-小学主题班会课件
- 导游业务课件教学课件
- 人教版2024新版八年级全一册信息技术第9课 互联协议仍沿用 教学设计
评论
0/150
提交评论