版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC
2、与DEF是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D42已知:如图,在扇形中,半径,将扇形沿过点的直线折叠,点恰好落在弧上的点处,折痕交于点,则弧的长为( )ABCD3下列四个实数中是无理数的是( )A2.5 B103 C D1.4144若一次函数y(2m3)x1+m的图象不经过第三象限,则m的取值范图是()A1mB1mC1mD1m5尺规作图要求:、过直线外一点作这条直线的垂线;、作线段的垂直平分线;、过直线上一点作这条直线的垂线;、作角的平分线如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A,B,C,D,6如图,正方形ABCD的边长为3cm,动
3、点P从B点出发以3cm/s的速度沿着边BCCDDA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动设P点运动时间为x(s),BPQ的面积为y(cm2),则y关于x的函数图象是( )ABCD7下列图形中,既是中心对称图形又是轴对称图形的是()A正五边形 B平行四边形 C矩形 D等边三角形8某几何体的左视图如图所示,则该几何体不可能是()ABCD9如图在ABC中,ACBC,过点C作CDAB,垂足为点D,过D作DEBC交AC于点E,若BD6,AE5,则sinEDC的值为()ABCD10如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A
4、、D、B在同一条直线上),设CAB,那么拉线BC的长度为()ABCD11如图,等腰直角三角形位于第一象限,直角顶点在直线上,其中点的横坐标为,且两条直角边,分别平行于轴、轴,若反比例函数的图象与有交点,则的取值范围是( )ABCD12如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A正比例函数y=kx(k为常数,k0,x0)B一次函数y=kx+b(k,b为常数,kb0,x0)C反比例函数y=(k为常数,k0,x0)D二次函数y=
5、ax2+bx+c(a,b,c为常数,a0,x0)二、填空题:(本大题共6个小题,每小题4分,共24分)13若a2+32b,则a32ab+3a_14如图,把一个面积为1的正方形分成两个面积为的长方形,再把其中一个面积为的长方形分成两个面积为的正方形,再把其中一个面积为的正方形分成两个面积为的长方形,如此进行下去,试用图形揭示的规律计算:_15一个正方形AOBC各顶点的坐标分别为A(0,3),O(0,0),B(3,0),C(3,3)若以原点为位似中心,将这个正方形的边长缩小为原来的,则新正方形的中心的坐标为_16如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90的最大扇形ABC,用该扇形铁皮围
6、成一个圆锥,所得圆锥的底面圆的半径为 米17分解因式:a3a=_18如图,在扇形AOB中,AOB=90,点C为OA的中点,CEOA交于点E,以点O为圆心,OC的长为半径作交OB于点D,若OA=2,则阴影部分的面积为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a2n+1,b2n2+2n,c2n2+2n+1(n为正整数)是一组勾股数
7、,请证明满足以上公式的a、b、c的数是一组勾股数然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作九章算术中,书中提到:当a(m2n2),bmn,c(m2+n2)(m、n为正整数,mn时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n5,求该直角三角形另两边的长20(6分)如图,在ABC中,点D,E分别在边AB,AC上,AED=B,射线AG分别交线段DE,BC于点F,G,且求证:ADFACG;若,求的值 21(6分)先化简,再求值:,其中x=,y=22(8分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两
8、个函数的“亲近距离”(1)求抛物线yx22x+3与x轴的“亲近距离”;(2)在探究问题:求抛物线yx22x+3与直线yx1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由(3)若抛物线yx22x+3与抛物线y+c的“亲近距离”为,求c的值23(8分)如图,在五边形ABCDE中,BCD=EDC=90,BC=ED,AC=AD求证:ABCAED;当B=140时,求BAE的度数24(10分)如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AEED,DF=DC,连结EF并延长交BC的
9、延长线于点G,连结BE求证:ABEDEF若正方形的边长为4,求BG的长25(10分)如图,AB为O的直径,C为O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E(1)求证:AC平分DAB;(2)若BE=3,CE=3,求图中阴影部分的面积26(12分)地球环境问题已经成为我们日益关注的问题.学校为了普及生态环保知识,提高学生生态环境保护意识,举办了“我参与,我环保”的知识竞赛.以下是从初一、初二两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:初一:76 88 93 65 78 94 89 68 95 50 89 88 89 89 77 94 87 88 92
10、91初二:74 97 96 89 98 74 69 76 72 78 99 72 97 76 99 74 99 73 98 74(1)根据上面的数据,将下列表格补充完整;整理、描述数据:成绩x人数班级初一1236初二011018(说明:成绩90分及以上为优秀,8090分为良好,6080分为合格,60分以下为不合格)分析数据:年级平均数中位数众数初一8488.5初二84.274(2)得出结论:你认为哪个年级掌握生态环保知识水平较好并说明理由.(至少从两个不同的角度说明推断的合理性).27(12分)如图,点D是AB上一点,E是AC的中点,连接DE并延长到F,使得DE=EF,连接CF求证:FCAB参
11、考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似性质得出ABC与DEF是位似图形,ABC与DEF是相似图形,将ABC的三边缩小的原来的,ABC与DEF的周长比为2:1,故选项错误,根据面积比等于相似比的平方,ABC与DEF的面积比为4:1故选C【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键
12、2、D【解析】如图,连接OD根据折叠的性质、圆的性质推知ODB是等边三角形,则易求AOD=110-DOB=50;然后由弧长公式弧长的公式 来求 的长【详解】解:如图,连接OD解:如图,连接OD根据折叠的性质知,OB=DB又OD=OB,OD=OB=DB,即ODB是等边三角形,DOB=60AOB=110,AOD=AOB-DOB=50,的长为 =5故选D【点睛】本题考查了弧长的计算,翻折变换(折叠问题)折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等所以由折叠的性质推知ODB是等边三角形是解答此题的关键之处3、C【解析】本题主要考查了无理数的定义根据无理数
13、的定义:无限不循环小数是无理数即可求解解:A、2.5是有理数,故选项错误;B、103是有理数,故选项错误;C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C4、B【解析】根据一次函数的性质,根据不等式组即可解决问题;【详解】一次函数y=(2m-3)x-1+m的图象不经过第三象限,解得1m故选:B【点睛】本题考查一次函数的图象与系数的关系等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型5、D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案【详解】、过直线外一点作这条直
14、线的垂线,观察可知图符合;、作线段的垂直平分线,观察可知图符合;、过直线上一点作这条直线的垂线,观察可知图符合;、作角的平分线,观察可知图符合,所以正确的配对是:,故选D【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键6、C【解析】试题分析:由题意可得BQ=x0 x1时,P点在BC边上,BP=3x,则BPQ的面积=BPBQ,解y=3xx=;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQBC,解y=x3=;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=APBQ,解y=(93x)x=;故D选项错误故选C考点:动点问题的函数图象7、C【解析】分析:
15、根据中心对称图形和轴对称图形对各选项分析判断即可得解详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.8、D【解析】解:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图均为从左往右正方形个数为2,1,符合题意,选项D的左视图
16、从左往右正方形个数为2,1,1,故选D【点睛】本题考查几何体的三视图9、A【解析】由等腰三角形三线合一的性质得出AD=DB=6,BDC=ADC=90,由AE=5,DEBC知AC=2AE=10,EDC=BCD,再根据正弦函数的概念求解可得【详解】ABC中,ACBC,过点C作CDAB,ADDB6,BDCADC90,AE5,DEBC,AC2AE10,EDCBCD,sinEDCsinBCD,故选:A【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点10、B【解析】根据垂直的定义和同角的余角相等,可由CAD+ACD=90,ACD+BCD
17、=90,可求得CAD=BCD,然后在RtBCD中 cosBCD=,可得BC=.故选B点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键11、D【解析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与ABC有唯一交点时,这个交点分别为A、E,由此可求出k的取值范围.解:,又过点,交于点,故选D.12、C【解析】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,由AE与BF为圆的切线,利用切线的性质得到A
18、E与EO垂直,BF与OF垂直,由AE=BF,OE=OF,利用HL得到直角三角形AOE与直角BOF全等,利用全等三角形的对应角相等得到A=B,利用等角对等边可得出三角形QAB为等腰三角形,由O为底边AB的中点,利用三线合一得到QO垂直于AB,得到一对直角相等,再由FQO与OQB为公共角,利用两对对应角相等的两三角形相似得到三角形FQO与三角形OQB相似,同理得到三角形EQO与三角形OAQ相似,由相似三角形的对应角相等得到QOE=QOF=A=B,再由切线长定理得到OD与OC分别为EOG与FOG的平分线,得到DOC为EOF的一半,即DOC=A=B,又GCO=FCO,得到三角形DOC与三角形OBC相似
19、,同理三角形DOC与三角形DAO相似,进而确定出三角形OBC与三角形DAO相似,由相似得比例,将AD=x,BC=y代入,并将AO与OB换为AB的一半,可得出x与y的乘积为定值,即y与x成反比例函数,即可得到正确的选项【详解】延长AD,BC交于点Q,连接OE,OF,OD,OC,OQ,AE,BF为圆O的切线,OEAE,OFFB,AEO=BFO=90,在RtAEO和RtBFO中,RtAEORtBFO(HL),A=B,QAB为等腰三角形,又O为AB的中点,即AO=BO,QOAB,QOB=QFO=90,又OQF=BQO,QOFQBO,B=QOF,同理可以得到A=QOE,QOF=QOE,根据切线长定理得:
20、OD平分EOG,OC平分GOF,DOC=EOF=A=B,又GCO=FCO,DOCOBC,同理可以得到DOCDAO,DAOOBC,ADBC=AOOB=AB2,即xy=AB2为定值,设k=AB2,得到y=,则y与x满足的函数关系式为反比例函数y=(k为常数,k0,x0)故选C【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值【
21、详解】解:a2+3=2b,a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键14、【解析】结合图形发现计算方法: ,即计算其面积和的时候,只需让总面积减去剩下的面积.【详解】解:原式= 故答案为:【点睛】此题注意结合图形的面积找到计算的方法:其中的面积和等于总面积减去剩下的面积.15、(,)或(,)【解析】分点A、B、C的对应点在第一象限和第三象限两种情况,根据位似变换和正方形的性质解答可得【详解】如图,当点A、B、C的对应点在第一象限时,由位似比为1:2知点A(0,)、B(,0)、C(,),该正方
22、形的中心点的P的坐标为(,);当点A、B、C的对应点在第三象限时,由位似比为1:2知点A(0,-)、B(-,0)、C(-,-),此时新正方形的中心点Q的坐标为(-,-),故答案为(,)或(-,-)【点睛】本题主要考查位似变换,解题的关键是熟练掌握位似变换的性质和正方形的性质16、【解析】先利用ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2r=,然后解方程即可【详解】O的直径BC=,AB=BC=1,设圆锥的底面圆的半径为r,则2r=,解得r=,即圆锥的底面圆的半径为米故答
23、案为17、a(a+1)(a1)【解析】解:a3a=a(a21)=a(a+1)(a1)故答案为:a(a+1)(a1)18、.【解析】试题解析:连接OE、AE,点C为OA的中点,CEO=30,EOC=60,AEO为等边三角形,S扇形AOE= S阴影=S扇形AOB-S扇形COD-(S扇形AOE-SCOE)= = =三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)证明见解析;(2)当n5时,一边长为37的直角三角形另两边的长分别为12,1【解析】(1)根据题意只需要证明a2+b2c2,即可解答(2)根据题意将n5代入得到a (m252),b5m,c (m2
24、+25),再将直角三角形的一边长为37,分别分三种情况代入a (m252),b5m,c (m2+25),即可解答【详解】(1)a2+b2(2n+1)2+(2n2+2n)24n2+4n+1+4n4+8n3+4n24n4+8n3+8n2+4n+1,c2(2n2+2n+1)24n4+8n3+8n2+4n+1,a2+b2c2,n为正整数,a、b、c是一组勾股数;(2)解:n5a (m252),b5m,c (m2+25),直角三角形的一边长为37,分三种情况讨论,当a37时, (m252)37,解得m3 (不合题意,舍去)当y37时,5m37,解得m (不合题意舍去);当z37时,37 (m2+n2),
25、解得m7,mn0,m、n是互质的奇数,m7,把m7代入得,x12,y1综上所述:当n5时,一边长为37的直角三角形另两边的长分别为12,1【点睛】此题考查了勾股数和勾股定理,熟练掌握勾股定理是解题关键20、 (1)证明见解析;(2)1.【解析】(1)欲证明ADFACG,由可知,只要证明ADF=C即可(2)利用相似三角形的性质得到,由此即可证明【解答】(1)证明:AED=B,DAE=DAE,ADF=C,ADFACG(2)解:ADFACG,又,121、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原
26、式=2+2=22、(1)2;(2)不同意他的看法,理由详见解析;(3)c1【解析】(1)把y=x22x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;(2)如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),则PQ=t22t+3(t1),然后利用二次函数的性质得到抛物线y=x22x+3与直线y=x1的“亲近距离”,然后对他的看法进行判断;(3)M点为抛物线y=x22x+3任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为c,从而得到抛物线y=
27、x22x+3与抛物线的“亲近距离”,所以,然后解方程即可【详解】(1)y=x22x+3=(x1)2+2,抛物线上的点到x轴的最短距离为2,抛物线y=x22x+3与x轴的“亲近距离”为:2;(2)不同意他的看法理由如下:如图,P点为抛物线y=x22x+3任意一点,作PQy轴交直线y=x1于Q,设P(t,t22t+3),则Q(t,t1),PQ=t22t+3(t1)=t23t+4=(t)2+,当t=时,PQ有最小值,最小值为,抛物线y=x22x+3与直线y=x1的“亲近距离”为,而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,不同意他的看法;(3)M点为抛物线y=x22x+3
28、任意一点,作MNy轴交抛物线于N,设M(t,t22t+3),则N(t,t2+c),MN=t22t+3(t2+c)=t22t+3c=(t)2+c,当t=时,MN有最小值,最小值为c,抛物线y=x22x+3与抛物线的“亲近距离”为c,c=1【点睛】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键23、(1)详见解析;(2)80【分析】(1)根据ACD=ADC,BCD=EDC=90,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【解析】(1)根据ACD=ADC,BCD=E
29、DC=90,可得ACB=ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到BAE的度数【详解】证明:(1)AC=AD,ACD=ADC,又BCD=EDC=90,ACB=ADE,在ABC和AED中,ABCAED(SAS);解:(2)当B=140时,E=140,又BCD=EDC=90,五边形ABCDE中,BAE=5401402902=80【点睛】考点:全等三角形的判定与性质24、(1)见解析;(2)BG=BC+CG=1【解析】(1)利用正方形的性质,可得A=D,根据已知可得AE:AB=DF:DE,根据有两边对应成比例且夹角相等三角形相似,可得ABED
30、EF;(2)根据相似三角形的预备定理得到EDFGCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:ABCD为正方形,AD=AB=DC=BC,A=D=90 .AE=ED,AE:AB=1:2.DF=DC,DF:DE=1:2,AE:AB=DF:DE,ABEDEF;(2)解:ABCD为正方形,EDBG,EDFGCF,ED:CG=DF:CF.又DF=DC,正方形的边长为4,ED=2,CG=6,BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25、(1)证明见解析;(2) 【解析】(1)连接OC,如图,利用切线的性质得COCD,则ADCO,所以DAC=ACO,加上ACO=CAO,从而得到DAC=CAO;(2)设O半径为r,利用勾股定理得到r2+27=(r+3)2,解得r=3,再利用锐角三角函数的定义计算出COE=60,然后根据扇形的面积公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国绝热隔音材料行业十三五发展规划及投资需求分析报告
- 2024-2030年中国糖果、巧克力行业竞争策略及投资盈利预测报告
- 2024-2030年中国粉状氧化铜行业发展状况规划分析报告
- 2024-2030年中国窗帘装饰材料项目可行性研究报告
- 2024-2030年中国福建省小水电行业发展前景预测规划分析报告
- 春季高考职业教育升学班校企合作方案
- 2024-2030年中国石英坩埚行业前景预测发展策略分析报告
- 2024全新家具定制与维修服务的2024年度合同范本
- 工业园区混凝土挡土墙施工方案
- 2024年建筑项目全面劳务清包合同模板
- 装修垃圾清运处置方案
- JC-T 2536-2019水泥-水玻璃灌浆材料
- 品牌授权协议书
- 艺术设计就业职业生涯规划
- 《狙击手》和《新神榜杨戬》电影赏析
- 枪库应急处置预案
- 老年患者术后谵妄的护理干预
- 《凸透镜成像的规律》课件
- 仓库管理中的客户服务和沟通技巧
- 规划选址及用地预审
- 土砂石料厂项目融资计划书
评论
0/150
提交评论