版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列图案中,是轴对称图形但不是中心对称图形的是()ABCD2计算(5)(3)的结果等于()A8 B8 C2 D23将某不等式组的解集表示在数轴上,下列表示正确的是( )ABCD4若二次函数的图象经过点(1,0),则方程的解为( )A,B,
2、C,D,5一个几何体的三视图如图所示,该几何体是A直三棱柱B长方体C圆锥D立方体6如图,ABC纸片中,A56,C88沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD则BDE的度数为( )A76B74C72D707如图,已知,则的度数为( )ABCD8 “a是实数,|a|0”这一事件是( )A必然事件B不确定事件C不可能事件D随机事件9如图,在平面直角坐标系中,P的圆心坐标是(3,a)(a3),半径为3,函数yx的图象被P截得的弦AB的长为4,则a的值是()A4B3C3D10如图,在平面直角坐标系中RtABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,ABC=30,把
3、RtABC先绕B点顺时针旋转180,然后再向下平移2个单位,则A点的对应点A的坐标为()A(4,2)B(4,2+)C(2,2+)D(2,2)二、填空题(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2 .请你写出一种平移方法. 答:_.12某校园学子餐厅把WIFI密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是_13有一组数据:3,5,5,6,7,这组数据的众数为_14把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆
4、的半径为 cm15如图,直线lx轴于点P,且与反比例函数y1(x0)及y2(x0)的图象分别交于点A,B,连接OA,OB,已知OAB的面积为2,则k1k2_.16如图,在菱形ABCD中,ABBD点E、F分别在AB、AD上,且AEDF连接BF与DE相交于点G,连接CG与BD相交于点H下列结论:AEDDFB;S四边形BCDGCG2;若AF2DF,则BG6GF其中正确的结论有_(填序号)三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.18(8分)如图,在ABC中,AB=AC,以
5、AB为直径作O交BC于点D,过点D作O的切线DE交AC于点E,交AB延长线于点F(1)求证:BD=CD;(2)求证:DC2=CEAC;(3)当AC=5,BC=6时,求DF的长19(8分)已知,如图1,直线y=x+3与x轴、y轴分别交于A、C两点,点B在x轴上,点B的横坐标为,抛物线经过A、B、C三点点D是直线AC上方抛物线上任意一点(1)求抛物线的函数关系式;(2)若P为线段AC上一点,且SPCD=2SPAD,求点P的坐标;(3)如图2,连接OD,过点A、C分别作AMOD,CNOD,垂足分别为M、N当AM+CN的值最大时,求点D的坐标20(8分)校园手机现象已经受到社会的广泛关注某校的一个兴趣
6、小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查并将调查数据作出如下不完整的整理;看法频数频率赞成5无所谓0.1反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数21(8分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转如果这三种可能性大小相同,现有两辆汽车经过这个十字路口(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率(2)求至少有一辆汽车向左转的概率22(10分)如图,有四张背面完全相同的纸牌A,B,C,D,其正面
7、分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A,B,C,D表示).23(12分)如图,在ABC中,AB=AC=1,BC=5-12,在AC边上截取AD=BC,连接BD(1)通过计算,判断AD2与ACCD的大小关系;(2)求ABD的度数24在平面直角坐标系 xOy 中,抛物线 y=ax24ax+3a2(a0)与 x轴交
8、于 A,B 两(点 A 在点 B 左侧)(1)当抛物线过原点时,求实数 a 的值;(2)求抛物线的对称轴;求抛物线的顶点的纵坐标(用含 a 的代数式表示);(3)当 AB4 时,求实数 a 的取值范围参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】分析:根据轴对称图形与中心对称图形的概念分别分析得出答案详解:A是轴对称图形,也是中心对称图形,故此选项错误; B不是轴对称图形,也不是中心对称图形,故此选项错误; C不是轴对称图形,是中心对称图形,故此选项错误; D是轴对称图形,不是中心对称图形,故此选项正确 故选D点睛:本题考查了轴对称图形和中心对称图形的概念轴对称图形的关键
9、是寻找对称轴,图形沿对称轴折叠后可重合; 中心对称图形是要寻找对称中心,图形旋转180后与原图形重合2、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)3、B【解析】分析:本题可根据数轴的性质画出数轴:实心圆点包括该点用“”,“”表示,空心圆点不包括该点用“”表示,大于向右小于向左点睛:不等式组的解集为1x,向右画; ,向左画),数轴上的点把数轴分成若干段,
10、如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”,“”要用实心圆点表示;“”要用空心圆点表示.4、C【解析】二次函数的图象经过点(1,0),方程一定有一个解为:x=1,抛物线的对称轴为:直线x=1,二次函数的图象与x轴的另一个交点为:(3,0),方程的解为:,故选C考点:抛物线与x轴的交点5、A【解析】根据三视图的形状可判断几何体的形状【详解】观察三视图可知,该几何体是直三棱柱故选A本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键6、B【解析】直接利用三角形内角和定理得出ABC的度数,再利用翻折变
11、换的性质得出BDE的度数【详解】解:A=56,C=88,ABC=180-56-88=36,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,CBD=DBE=18,C=DEB=88,BDE=180-18-88=74故选:B【点睛】此题主要考查了三角形内角和定理,正确掌握三角形内角和定理是解题关键7、B【解析】分析:根据AOC和BOC的度数得出AOB的度数,从而得出答案详解:AOC=70, BOC=30, AOB=7030=40,AOD=AOB+BOD=40+70=110,故选B点睛:本题主要考查的是角度的计算问题,属于基础题型理解各角之间的关系是解题的关键8、A【解析】根据数
12、轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|0恒成立,因此,这一事件是必然事件故选A9、B【解析】试题解析:作PCx轴于C,交AB于D,作PEAB于E,连结PB,如图,P的圆心坐标是(3,a),OC=3,PC=a,把x=3代入y=x得y=3,D点坐标为(3,3),CD=3,OCD为等腰直角三角形,PED也为等腰直角三角形,PEAB,AE=BE=AB=4=2,在RtPBE中,PB=3,PE=,PD=PE=,a=3+故选B考点:1垂径定理;2一次函数图象上点的坐标特征;3勾股定理10、D【解析】解:作ADBC,并作出把RtABC先绕B点顺时针旋转180后所得A1BC1,如图
13、所示AC=2,ABC=10,BC=4,AB=2,AD=,BD=1点B坐标为(1,0),A点的坐标为(4,)BD=1,BD1=1,D1坐标为(2,0),A1坐标为(2,)再向下平移2个单位,A的坐标为(2,2)故选D点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键二、填空题(本大题共6个小题,每小题3分,共18分)11、答案不唯一【解析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次函数
14、图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)+,然后把抛物线的平移问题转化为顶点的平移问题.12、143549【解析】根据题中密码规律确定所求即可.【详解】532=5310000+52100+5(2+3)=151025924=9210000+94100+9(2+4)=183654,863=8610000+83100+8(3+6)=482472,725=7210000+75100+7(2+5)=143549.故答案为:143549【点睛】本题考查有理数的混合运算,根据题意得出规律并熟练掌握运算法则是解题关键.13、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1
15、,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键14、1【解析】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在RtMOF中利用勾股定理求得OF的长即可【详解】过点O作OMEF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80r,MF=40,在RtOMF中,OM2+MF2=OF2,即(80r)2+402=r2,解得:r=1cm故答案为115、2【解析】试题分析:反比例函数(x1)及(x1)的图象均在第一象限内,1,1APx
16、轴,SOAP=,SOBP=,SOAB=SOAPSOBP=2,解得:=2故答案为216、【解析】(1)由已知条件易得A=BDF=60,结合BD=AB=AD,AE=DF,即可证得AEDDFB,从而说明结论正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得CDN=CBM,如图,过点C作CMBF于点M,过点C作CNED于点N,结合CB=CD即可证得CBMCDN,由此可得S四边形BCDG=S四边形CMGN=2SCGN,在RtCGN中,由CGN=DBC=60,CNG=90可得GN=CG,CN=CG,由此即可求得SCGN=CG2,从而可得结论是正确的;(3)过点F作FKAB交DE于点K,由此可得D
17、FKDAE,GFKGBE,结合AF=2DF和相似三角形的性质即可证得结论成立.【详解】(1)四边形ABCD是菱形,BD=AB,AB=BD=BC=DC=DA,ABD和CBD都是等边三角形,A=BDF=60,又AE=DF,AEDDFB,即结论正确;(2)AEDDFB,ABD和DBC是等边三角形,ADE=DBF,DBC=CDB=BDA=60,GBC+CDG=DBF+DBC+CDB+GDB=DBC+CDB+GDB+ADE=DBC+CDB+BDA=180,点B、C、D、G四点共圆,CDN=CBM,如下图,过点C作CMBF于点M,过点C作CNED于点N,CDN=CBM=90,又CB=CD,CBMCDN,S
18、四边形BCDG=S四边形CMGN=2SCGN,在RtCGN中,CGN=DBC=60,CNG=90GN=CG,CN=CG,SCGN=CG2,S四边形BCDG=2SCGN,=CG2,即结论是正确的; (3)如下图,过点F作FKAB交DE于点K,DFKDAE,GFKGBE,AF=2DF,AB=AD,AE=DF,AF=2DF,BE=2AE,BG=6FG,即结论成立.综上所述,本题中正确的结论是:故答案为点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.三、解答题(
19、共8题,共72分)17、 (1) ,;(2)或.【解析】(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可【详解】(1)把代入得.反比例函数的表达式为把和代入得,解得一次函数的表达式为.(2)由得当或时,.【点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者
20、无交点18、(1)详见解析;(2)详见解析;(3)DF=【解析】(1)先判断出ADBC,即可得出结论;(2)先判断出ODAC,进而判断出CED=ODE,判断出CDECAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出,即可得出结论【详解】(1)连接AD,AB是O的直径,ADB=90,ADBC,AB=AC, BD=CD;(2)连接OD,DE是O的切线,ODE=90,由(1)知,BD=CD,OA=OB,ODAC,CED=ODE=90=ADC,C=C,CDECAD,CD2=CEAC;(3)AB=AC=5,由(1)知,ADB=90,OA=OB,OD=AB=,由(1
21、)知,CD=BC=3,由(2)知,CD2=CEAC,AC=5,CE=,AE=AC-CE=5-=,在RtCDE中,根据勾股定理得,DE=,由(2)知,ODAC,DF=【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出CDECAD是解本题的关键19、(1)y=x2x+3;(2)点P的坐标为(,1);(3)当AM+CN的值最大时,点D的坐标为(,)【解析】(1)利用一次函数图象上点的坐标特征可求出点A、C的坐标,由点B所在的位置结合点B的横坐标可得出点B的坐标,根据点A、B、C的坐标,利用待定系数法即可求出抛物线的函数关系式;(2)过点P作PEx
22、轴,垂足为点E,则APEACO,由PCD、PAD有相同的高且SPCD=2SPAD,可得出CP=2AP,利用相似三角形的性质即可求出AE、PE的长度,进而可得出点P的坐标;(3)连接AC交OD于点F,由点到直线垂线段最短可找出当ACOD时AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,根据相似三角形的性质可设点D的坐标为(3t,4t),利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之取其负值即可得出t值,再将其代入点D的坐标即可得出结论【详解】(1)直线y=x+3与x轴、y轴分别交于A、C两点,点A的坐标为(4,0),点C的坐标为(0,3)点B在x轴上,点B的横坐
23、标为,点B的坐标为(,0),设抛物线的函数关系式为y=ax2+bx+c(a0),将A(4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得: ,抛物线的函数关系式为y=x2x+3;(2)如图1,过点P作PEx轴,垂足为点E,PCD、PAD有相同的高,且SPCD=2SPAD,CP=2AP,PEx轴,COx轴,APEACO,AE=AO=,PE=CO=1,OE=OAAE=,点P的坐标为(,1);(3)如图2,连接AC交OD于点F,AMOD,CNOD,AFAM,CFCN,当点M、N、F重合时,AM+CN取最大值,过点D作DQx轴,垂足为点Q,则DQOAOC,设点D的坐标为(3t,4t
24、)点D在抛物线y=x2x+3上,4t=3t2+t+3,解得:t1=(不合题意,舍去),t2=,点D的坐标为(,),故当AM+CN的值最大时,点D的坐标为(,)【点睛】本题考查了待定系数法求二次函数解析式、一次(二次)函数图象上点的坐标特征、三角形的面积以及相似三角形的性质,解题的关键是:(1)根据点A、B、C的坐标,利用待定系数法求出抛物线的函数关系式;(2)利用相似三角形的性质找出AE、PE的长;(3)利用相似三角形的性质设点D的坐标为(3t,4t)20、(1)50;(2)见解析;(3)2400.【解析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把
25、整理的不完整图表补充完整;(3)根据题意列式计算即可【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:400.850人;故答案为:50;(2)无所谓的频数为:505405人,赞成的频率为:10.10.80.1;看法频数频率赞成50.1无所谓50.1反对400.8统计图为:(3)0.830002400人,答:该校持“反对”态度的学生人数是2400人【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据21、 (1);(2)【解析】(1)可以采用列表法或树状图求解可以得到一共有9种情
26、况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案【详解】(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,所以两辆汽车都不直行的概率为;(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等P(至少有一辆汽车向左转)=【点睛】此题考查了树状图法求概率解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解22、(1).(2)公平.【解析】试题分析:(1)首先根据题意结合概率公式可得答
27、案;(2)首先根据(1)求得摸出两张牌面图形都是轴对称图形的有16种情况,若摸出两张牌面图形都是中心对称图形的有12种情况,继而求得小明赢与小亮赢的概率,比较概率的大小,即可知这个游戏是否公平试题解析:(1)共有4张牌,正面是中心对称图形的情况有3种,所以摸到正面是中心对称图形的纸牌的概率是;(2)列表得:ABCDA(A,B)(A,C)(A,D)B(B,A)(B,C)(B,D)C(C,A)(C,B)(C,D)D(D,A)(D,B)(D,C)共产生12种结果,每种结果出现的可能性相同,其中两张牌都是轴对称图形的有6种,P(两张都是轴对称图形)=,因此这个游戏公平考点:游戏公平性;轴对称图形;中心对称图形;概率公式;列表法与树状图法.23、(1)AD2=ACCD(2)36【解析】试题分析:(1)通过计算得到AD2=3-52,再计算ACCD,比较即可得到结论;(2)由AD2=ACCD,得到BC2=ACCD,即BCAC=CDBC,从而得到ABCBDC,故有ABBD=ACBC,从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 语文大专论述习作练习解答习题卷
- 货物运输与全球供应链协议
- 购车合同范本格式
- 购销石子合同协议
- 走进大别山人文世界
- 超市生肉采购合约
- 转学承诺保证书范本
- 软件系统解决方案服务合同
- 轻松学习英语选修外研版课件来助力
- 运动员公正竞赛自律
- 危重症患者护理
- 虚拟现实直播兼职主播协议
- 2025届浙江省嘉兴市重点名校高三物理第一学期期中复习检测模拟试题含解析
- 预案演练知识培训
- 第三单元 勇担社会责任(复习课件)-八年级道德与法治上册同步备课系列(统编版)
- 适用于2024年《语言学概论》课程的教案创新策略
- 中小学学校国家智慧教育云平台应用项目实施方案
- 2024-2030年中国干细胞医疗行业趋势分析及投资战略研究报告
- 湖北省武汉市六校联考2024-2025学年高二上学期11月期中英语试题(含答案含听力原文无音频)
- 2024版2024年【教案+】初中美术《铅笔淡彩》
- 网络安全管理操作手册
评论
0/150
提交评论