版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,在平行四边形ABCD中,AB=4,BC=
2、6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则CDE的周长是()A7B10C11D122如图,直线ykx+b与ymx+n分别交x轴于点A(1,0),B(4,0),则函数y(kx+b)(mx+n)中,则不等式的解集为()Ax2B0 x4C1x4Dx1 或 x43甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息已知甲先出发2s在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:a8;b92;c1其中正确的是( )AB仅有C仅有D仅有4计算的值为()A3B9C3D95如图,
3、AB是O的直径,CD是O的弦,ACD=30,则BAD为( )A30B50C60D706实数a在数轴上对应点的位置如图所示,把a,a,a2按照从小到大的顺序排列,正确的是()Aaaa2Baaa2Caa2aDaa2a74的平方根是( )A16B2C2D8如图,ADBC,AC平分BAD,若B40,则C的度数是()A40B65C70D809如图,矩形ABCD中,AB=3,AD=4,连接BD,DBC的角平分线BE交DC于点E,现把BCE绕点B逆时针旋转,记旋转后的BCE为BCE当线段BE和线段BC都与线段AD相交时,设交点分别为F,G若BFD为等腰三角形,则线段DG长为()ABCD10已知点M、N在以A
4、B为直径的圆O上,MON=x,MAN= y, 则点(x,y)一定在( )A抛物线上B过原点的直线上C双曲线上D以上说法都不对二、填空题(本大题共6个小题,每小题3分,共18分)11若两个相似三角形的面积比为14,则这两个相似三角形的周长比是_12如图,在44的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形O、A、B分别是小正方形的顶点,则扇形OAB周长等于_(结果保留根号及)13若代数式有意义,则x的取值范围是_14定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”根据上述定义,“距离坐标”是
5、(1,2)的点的个数共有_个15如图,矩形ABCD面积为40,点P在边CD上,PEAC,PFBD,足分别为E,F若AC10,则PE+PF_16已知一组数据1,2,x,2,3,3,5,7的众数是2,则这组数据的中位数是 三、解答题(共8题,共72分)17(8分)在眉山市樱花节期间,岷江二桥一端的空地上有一块矩形的标语牌ABCD(如图)已知标语牌的高AB=5m,在地面的点E处,测得标语牌点A的仰角为30,在地面的点F处,测得标语牌点A的仰角为75,且点E,F,B,C在同一直线上,求点E与点F之间的距离(计算结果精确到0.1m,参考数据:1.41,1.73)18(8分)解不等式组,并写出其所有的整数
6、解19(8分)我校春晚遴选男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去参加主持人精选。(1)选中的男主持人为甲班的频率是 (2)选中的男女主持人均为甲班的概率是多少?(用树状图或列表)20(8分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶已知BC=80千米,A=45,B=30开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:1.41,1.73)21(8分)如图1,
7、抛物线l1:y=x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA、PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴(如图2所示),交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值22(10分)如图,点A(m,m1),B(m1,2m3)都在反比例函数的图象上(1)求m,k的值; (2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形
8、是平行四边形,试求直线MN的函数表达式23(12分)2017年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?24商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均
9、每天可多售出 2件设每件商品降价x元. 据此规律,请回答:(1)商场日销售量增加 件,每件商品盈利 元(用含x的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】四边形ABCD是平行四边形,AD=BC=4,CD=AB=6,由作法可知,直线MN是线段AC的垂直平分线,AE=CE,AE+DE=CE+DE=AD,CDE的周长=CE+DE+CD=AD+CD=4+6=1故选B2、C【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可【详解】直线y1kx+b与直线y2mx+n分别交
10、x轴于点A(1,0),B(4,0),不等式(kx+b)(mx+n)0的解集为1x4,故选C【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变3、A【解析】解:乙出发时甲行了2秒,相距8m,甲的速度为8/24m/ s100秒时乙开始休息乙的速度是500/1005m/ sa秒后甲乙相遇,a8/(54)8秒因此正确100秒时乙到达终点,甲走了4(1002)408 m,b50040892 m 因此正确甲走到终点一共需耗时500/4125 s,c12521 s 因此正确终上所述,
11、结论皆正确故选A4、B【解析】(9)2=81,9.故选B.5、C【解析】试题分析:连接BD,ACD=30,ABD=30,AB为直径,ADB=90,BAD=90ABD=60故选C考点:圆周角定理6、D【解析】根据实数a在数轴上的位置,判断a,a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.【详解】由数轴上的位置可得,a0, 0a2a,所以,aa2a.故选D【点睛】本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,a,a2的位置.7、C【解析】试题解析:(2)2=4,4的平方根是2,故选C考点:平方根.8、C【解析】根据平行线性质得出B+BAD180,C
12、DAC,求出BAD,求出DAC,即可得出C的度数【详解】解:ADBC,B+BAD180,B40,BAD140,AC平分DAB,DACBAD70,ABC,CDAC70,故选C【点睛】本题考查了平行线性质和角平分线定义,关键是求出DAC或BAC的度数9、A【解析】先在RtABD中利用勾股定理求出BD=5,在RtABF中利用勾股定理求出BF=,则AF=4-=再过G作GHBF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GHFB,得出=,即可求解【详解】解:在RtABD中,A=90,AB=3,AD=4,BD=5,在RtABF中,A=90,A
13、B=3,AF=4-DF=4-BF,BF2=32+(4-BF)2,解得BF=,AF=4-=过G作GHBF,交BD于H,FBD=GHD,BGH=FBG,FB=FD,FBD=FDB,FDB=GHD,GH=GD,FBG=EBC=DBC=ADB=FBD,又FBG=BGH,FBG=GBH,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,GHFB, =,即=,解得x=故选A【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键10、B【解析】由圆周角定理得出MON与MAN的关系,从而得出x与y的关系式,进而可得出答案
14、.【详解】MON与MAN分别是弧MN所对的圆心角与圆周角,MAN=MON, ,点(x,y)一定在过原点的直线上.故选B.【点睛】本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题分析:两个相似三角形的面积比为1:4,这两个相似三角形的相似比为1:1,这两个相似三角形的周长比是1:1,故答案为1:1考点:相似三角形的性质12、+4【解析】根据正方形的性质,得扇形所在的圆心角是90,扇形的半径是2解:根据图形中正方形的性质,得AOB=90,OA=OB=2扇形OAB的弧长等于13、x3【解析】由代数式
15、有意义,得x-30,解得x3,故答案为: x3.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:分式无意义:分母为零;分式有意义:分母不为零;分式值为零:分子为零且分母不为零.14、4【解析】根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.【详解】距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.【点睛】本题考查了点的坐标,理解题意中距离坐标是解题的关键.15、4【解析】由矩形的性质可得AO=CO=5=BO=DO,由SDCO=SDPO+SPCO,可得PE+PF的值【详解】解:如图,设AC与BD的交点为O,连接P
16、O,四边形ABCD是矩形AO=CO=5=BO=DO,SDCO=S矩形ABCD=10,SDCO=SDPO+SPCO,10=DOPF+OCPE20=5PF+5PEPE+PF=4故答案为4【点睛】本题考查了矩形的性质,利用三角形的面积关系解决问题是本题的关键16、2.1【解析】试题分析:数据1,2,x,2,3,3,1,7的众数是2,x=2,这组数据的中位数是(2+3)2=2.1;故答案为2.1考点:1、众数;2、中位数三、解答题(共8题,共72分)17、7.3米【解析】:如图作FHAE于H由题意可知HAF=HFA=45,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,由E=
17、30,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可【详解】解:如图作FHAE于H由题意可知HAF=HFA=45,AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,E=30,AB=5米,AE=2AB=10米,x+x=10,x=55,EF=2x=10107.3米,答:E与点F之间的距离为7.3米【点睛】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.18、不等式组的解集为1x2,该不等式组的整数解为1,2,1【解析】先求出不等式组的解集,即可求得该不等式组的整数解【详解】 由得,x1,由得,x2
18、所以不等式组的解集为1x2,该不等式组的整数解为1,2,1【点睛】本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了19、 (1) (2) ,图形见解析.【解析】(1)根据概率的定义即可求出;(2)先根据题意列出树状图,再利用概率公式进行求解.【详解】(1)由题意P(选中的男主持人为甲班)=(2)列出树状图如下P(选中的男女主持人均为甲班的)=【点睛】此题主要考查概率的计算,解题的关键是根据题意列出树状图进行求解.20、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B
19、地比原来少走的路程为27.2千米【解析】(1)过点C作AB的垂线CD,垂足为D,在直角ACD中,解直角三角形求出CD,进而解答即可;(2)在直角CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程【详解】解:(1)过点C作AB的垂线CD,垂足为D,ABCD,sin30=,BC=80千米,CD=BCsin30=80(千米),AC=(千米),AC+BC=80+40401.41+80=136.4(千米),答:开通隧道前,汽车从A地到B地大约要走136.4千米;(2)cos30=,BC=80(千米),BD=BCcos30=80(千米),tan45=,CD=40(千米)
20、,AD=(千米),AB=AD+BD=40+4040+401.73=109.2(千米),汽车从A地到B地比原来少走多少路程为:AC+BCAB=136.4109.2=27.2(千米)答:汽车从A地到B地比原来少走的路程为27.2千米【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线21、(1)抛物线l2的函数表达式;y=x24x1;(2)P点坐标为(1,1);(3)在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【解析】(1)由抛物线l1的对称轴求出b的值,即可得出抛物线l1的解析式,从而得出点A、点B的坐标
21、,由点B、点E、点D的坐标求出抛物线l2的解析式即可;(2)作CHPG交直线PG于点H,设点P的坐标为(1,y),求出点C的坐标,进而得出CH=1,PH=|3y |,PG=|y |,AG=2,由PA=PC可得PA2=PC2,由勾股定理分别将PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)设出点M的坐标,求出两个抛物线交点的横坐标分别为1,4,当1x4时,点M位于点N的下方,表示出MN的长度为关于x的二次函数,在x的范围内求二次函数的最值;当4x1时,点M位于点N的上方,同理求出此时MN的最大值,取二者较大值,即可得出MN的最大值.【详解】(1)抛物线l1:y=x2+bx
22、+3对称轴为x=1,x=1,b=2,抛物线l1的函数表达式为:y=x2+2x+3,当y=0时,x2+2x+3=0,解得:x1=3,x2=1,A(1,0),B(3,0),设抛物线l2的函数表达式;y=a(x1)(x+1),把D(0,1)代入得:1a=1,a=1,抛物线l2的函数表达式;y=x24x1;(2)作CHPG交直线PG于点H,设P点坐标为(1,y),由(1)可得C点坐标为(0,3),CH=1,PH=|3y |,PG=|y |,AG=2,PC2=12+(3y)2=y26y+10,PA2= =y2+4,PC=PA,PA2=PC2,y26y+10=y2+4,解得y=1,P点坐标为(1,1);(
23、3)由题意可设M(x,x24x1),MNy轴,N(x,x2+2x+3),令x2+2x+3=x24x1,可解得x=1或x=4,当1x4时,MN=(x2+2x+3)(x24x1)=2x2+6x+8=2(x)2+,显然14,当x=时,MN有最大值12.1;当4x1时,MN=(x24x1)(x2+2x+3)=2x26x8=2(x)2,显然当x时,MN随x的增大而增大,当x=1时,MN有最大值,MN=2(1)2=12.综上可知:在点M自点A运动至点E的过程中,线段MN长度的最大值为12.1【点睛】本题是二次函数与几何综合题, 主要考查二次函数解析式的求解、勾股定理的应用以及动点求线段最值问题.22、(1)m3,k12;(2)或【解析】【分析】(1)把A(m,m1),B(m3,m1)代入反比例函数y,得km(m1)(m3)(m1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AMx轴于点M,过点B作BNy轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.【详解】解:(1)点A(m,m1),B(m3,m1)都在反比例函数y的图像上,kxy,km(m1)(m3)(m1),m2mm22m3,解得m3,k3(31)12.(2)m3,A(3,4),B(6,2)设直线AB的函数表达式为yk
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度黄金储备安保措施合同
- 2024出口贸易运输代理合同
- 2024年劳动合同中的安全约定3篇
- 2024年度水利工程路面劳务分包合同2篇
- 2024年建筑工程施工合作合同范本版B版
- 2024年专利申请法律保护合同3篇
- 2024年圆通快递买断运输合同3篇
- 2024常州市物业管理委托合同(A)(供物业委托管理用)
- 2024垃圾填埋处理场提升改造工程防渗系统合同
- 2024吉林省药品集中招标采购合同
- 2024-2030年中国电动工具配件行业市场发展趋势与前景展望战略分析报告
- 愚公移山英文 -中国故事英文版课件
- 酒店住宿水单模板1
- 落地式脚手架搭设在地下室顶板上部
- 经空气传播疾病医院感染预防与控制规范ppt课件
- 压力管道年度检验报告
- 课堂教学满意度调查表
- 《电机学》实验指导书
- 职工工会会员代表大会代表资格审查报告
- 农村安全用电规程(DL493―2021)
- 部编版一年级上册形近字组词(共3页)
评论
0/150
提交评论