安徽省蚌埠市五河市级名校2022年中考数学考前最后一卷含解析及点睛_第1页
安徽省蚌埠市五河市级名校2022年中考数学考前最后一卷含解析及点睛_第2页
安徽省蚌埠市五河市级名校2022年中考数学考前最后一卷含解析及点睛_第3页
安徽省蚌埠市五河市级名校2022年中考数学考前最后一卷含解析及点睛_第4页
安徽省蚌埠市五河市级名校2022年中考数学考前最后一卷含解析及点睛_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等设小明打字速度为x个/分钟,则列方程正确的是()ABCD2下列命题中错误的有()个(1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形(3)对角线相等的四

2、边形为矩形 (4)圆的切线垂直于半径(5)平分弦的直径垂直于弦A1 B2 C3 D43下列运算正确的是( )A4x+5y=9xyB(m)3m7=m10C(x3y)5=x8y5Da12a8=a44某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为()A28109B2.8108C2.8109D2.810105将二次函数yx2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )Ay(x1)22By(x1)22Cy(x1)22Dy(x1)226如图,二次函数y=ax2+bx+c(a0)的图象的顶点在第一象限,且过点(0,1)和(1,0)下列结论:ab0,b

3、24a,0a+b+c2,0b1,当x1时,y0,其中正确结论的个数是A5个B4个C3个D2个7下列图形中,既是中心对称,又是轴对称的是()ABCD8如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示cos的值,错误的是( )ABCD9整数a、b在数轴上对应点的位置如图,实数c在数轴上且满足,如果数轴上有一实数d,始终满足,则实数d应满足( ).ABCD10如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:ab0;2a+b=0;3a+c0;a+bm(am+b)(m为实数);

4、当1x3时,y0,其中正确的是()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A的位置,若OB,tanBOC,则点A的坐标为_12在平面直角坐标系中,点A(2,3)绕原点O逆时针旋转90的对应点的坐标为_13如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,则第2018个正方形的面积为_14如图,ABCD中,对角线AC,BD相交于点O,且ACBD,请你添加一个适当的条件_,使

5、ABCD成为正方形 15方程的解是_.16如图,点G是的重心,AG的延长线交BC于点D,过点G作交AC于点E,如果,那么线段GE的长为_三、解答题(共8题,共72分)17(8分)现有A、B两种手机上网计费方式,收费标准如下表所示:计费方式月使用费/元包月上网时间/分超时费/(元/分)A301200.20B603200.25设上网时间为x分钟,(1)若按方式A和方式B的收费金额相等,求x的值;(2)若上网时间x超过320分钟,选择哪一种方式更省钱?18(8分)先化简再求值:(1),其中x19(8分)某商品的进价为每件50元当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每

6、降价1元,每星期可多卖出20件在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?20(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天)12310日销售量(n件)198196194?该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1x5050 x90销售价格(元/件)x+60100 (1)求出第10天日销售量;(2)设销售

7、该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量(每件销售价格每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.21(8分)某科技开发公司研制出一种新型产品,每件产品的成本为2500元,销售单价定为3200元在该产品的试销期间,为了促销,鼓励商家购买该新型品,公司决定商家一次购买这种新型产品不超过10件时,每件按3200元销售:若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低5元,但销售单价均不低于2800元商家一次购买这种产品多少件时,

8、销售单价恰好为2800元?设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)22(10分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑

9、的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0m100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案23(12分)如图,在RtABC中,C=90,A=30,AB=8,点P从点A出发,沿折线ABBC向终点C运动,在AB上以每秒8个单位长度的速度运动,在BC上以每秒2个单位长度的速度运动,点Q从点C出发,沿CA方向以每秒个单位长度的速度运动,两点同时出发,当点P停

10、止时,点Q也随之停止设点P运动的时间为t秒(1)求线段AQ的长;(用含t的代数式表示)(2)当点P在AB边上运动时,求PQ与ABC的一边垂直时t的值;(3)设APQ的面积为S,求S与t的函数关系式;(4)当APQ是以PQ为腰的等腰三角形时,直接写出t的值24如图,一次函数y=kx+b的图象与反比例函数y=(x0)的图象交于A(2,1),B(,n)两点,直线y=2与y轴交于点C(1)求一次函数与反比例函数的解析式;(2)求ABC的面积.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打12

11、0个字所用的时间和小张打180个字所用的时间相等,可列方程得,故选C【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大2、D【解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可详解:等腰三角形的两个底角相等,(1)正确; 对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误; 对角线相等的平行四边形为矩形,(3)错误; 圆的切线垂直于过切点的半径,(4)错误; 平分弦(不是直径)的直径垂直于弦,(5)错误 故选D点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理

12、3、D【解析】各式计算得到结果,即可作出判断【详解】解:A、4x+5y=4x+5y,错误;B、(-m)3m7=-m10,错误;C、(x3y)5=x15y5,错误;D、a12a8=a4,正确;故选D【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键4、D【解析】根据科学计数法的定义来表示数字,选出正确答案.【详解】解:把一个数表示成a(1a10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.81010,所以答案选D.【点睛】本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.5、A【解析】试题分析:根据函数图象右移减、左移加

13、,上移加、下移减,可得答案解:将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 y=(x1)2+2,故选A考点:二次函数图象与几何变换6、B【解析】解:二次函数y=ax3+bx+c(a3)过点(3,3)和(3,3),c=3,ab+c=3抛物线的对称轴在y轴右侧,,x3a与b异号ab3,正确抛物线与x轴有两个不同的交点,b34ac3c=3,b34a3,即b34a正确抛物线开口向下,a3ab3,b3ab+c=3,c=3,a=b3b33,即b33b3,正确ab+c=3,a+c=ba+b+c=3b3b3,c=3,a3,a+b+c=a+b+3a+3+3=a+33+3

14、=33a+b+c3,正确抛物线y=ax3+bx+c与x轴的一个交点为(3,3),设另一个交点为(x3,3),则x33,由图可知,当3xx3时,y3;当xx3时,y3当x3时,y3的结论错误综上所述,正确的结论有故选B7、C【解析】根据中心对称图形,轴对称图形的定义进行判断【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误故选C【点睛】本题考查了中心对称图形,轴对称图形的判断关键是根据图形自身的对称性进行判断8、D【解析】根据锐角三角函

15、数的定义,余弦是邻边比斜边,可得答案【详解】cos=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.9、D【解析】根据acb,可得c的最小值是1,根据有理数的加法,可得答案【详解】由acb,得:c最小值是1,当c=1时,c+d=1+d,1+d0,解得:d1,db故选D【点睛】本题考查了实数与数轴,利用acb得出c的最小值是1是解题的关键10、A【解析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=1时,y=ab+c;然后由图象确定当x取何值时,y2【详解】对称轴在y轴右侧,a、b异号,ab2,故正确;对称轴

16、2a+b=2;故正确;2a+b=2,b=2a,当x=1时,y=ab+c2,a(2a)+c=3a+c2,故错误;根据图示知,当m=1时,有最大值;当m1时,有am2+bm+ca+b+c,所以a+bm(am+b)(m为实数)故正确如图,当1x3时,y不只是大于2故错误故选A【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a2时,抛物线向上开口;当a2时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab2),对称轴在y轴左; 当a与b异号时(即ab2),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点

17、,抛物线与y轴交于(2,c)二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】如图,作辅助线;根据题意首先求出AB、BC的长度;借助面积公式求出AD、OD的长度,即可解决问题【详解】解:四边形OABC是矩形,OA=BC,AB=OC,tanBOC=,AB=2OA,OB=,OA=2,AB=2OA由OA翻折得到,OA= OA=2如图,过点A作ADx轴与点D;设AD=a,OD=b;四边形ABCO为矩形,OAB=OCB=90;四边形ABAD为梯形;设AB=OC=a,BC=AO=b;OB=,tanBOC=,解得: ;由题意得:AO=AO=2;ABOABO;由勾股定理得:x2+y2=2,由面

18、积公式得:xy+222(x+2)(y+2);联立并解得:x=,y=故答案为(,)【点睛】该题以平面直角坐标系为载体,以翻折变换为方法构造而成;综合考查了矩形的性质、三角函数的定义、勾股定理等几何知识点;对分析问题解决问题的能力提出了较高的要求12、(3,2)【解析】作出图形,然后写出点A的坐标即可【详解】解答:如图,点A的坐标为(-3,2)故答案为(-3,2)【点睛】本题考查的知识点是坐标与图象变化-旋转,解题关键是注意利用数形结合的思想求解13、1【解析】先分别求出第1个、第2个、第3个正方形的面积,由此总结规律,得到第n个正方形的面积,将n=2018代入即可求出第2018个正方形的面积【详

19、解】:第1个正方形的面积为:1+41221=5=51;第2个正方形的面积为:5+412255=25=52;第3个正方形的面积为:25+41222525=125=53;第n个正方形的面积为:5n;第2018个正方形的面积为:1故答案为1【点睛】本题考查了规律型:图形的变化类,解题的关键是得到第n个正方形的面积14、BAD=90 (不唯一)【解析】根据正方形的判定定理添加条件即可.【详解】解:平行四边形 ABCD的对角线AC与BD相交于点O,且ACBD,四边形ABCD是菱形,当BAD=90时,四边形ABCD为正方形.故答案为:BAD=90.【点睛】本题考查了正方形的判定:先判定平行四边形是菱形,判

20、定这个菱形有一个角为直角.15、.【解析】根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论.16、2【解析】分析:由点G是ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GEBC,可证得AEGACD,然后由相似三角形的对应边成比例,即可求得线段GE的长详解:点G是ABC重心,BC=6,CD=BC=3,AG:AD=2:3,GEBC,AEGADC,GE:CD=AG:AD=2:3,GE=2.故答案为2.点睛:本题考查了三

21、角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.三、解答题(共8题,共72分)17、(1)x=270或x=520;(2)当320 x120时,yA与x之间的函数关系式为:yA=30+0.2x-120=0.2x+6, 即yA=30,0 x1200.2x+6,x120.当0 x320时,yB与x之间的函数关系式为:yB=60, 当x320时, yB与x之间的函数关系式为:yB=60+0.25x-320=0.25x-20, 即yB=60,0 x3200.25x-20,x320.方式A和方式B的收费金额相等,当0 x120时,yAyB,当120 x

22、320时,0.2x+6=60, 解得:x=270. 当x320时,0.2x+6=0.25x-20, 解得:x=520. 即x=270或x=520时,方式A和方式B的收费金额相等. (2) 若上网时间x超过320分钟,0.2x+60.25x-20,解得320 x520,当320 x520时,选择方式B更省钱;0.2x+6=0.25x-20,解得x=520,当x=520时,两种方式花钱一样多;0.2x+60,且x0,0 x20.(2)y=20 x2+100 x+6000=20(x)2+6125,当x=时,y取得最大值,最大值为6125,答:当降价2.5元时,每星期的利润最大,最大利润是6125元.

23、【点睛】本题考查的知识点是二次函数的应用,解题的关键是熟练的掌握二次函数的应用.20、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1x50时,y=2x2+160 x+4000;当50 x90时,y=120 x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元试题解析:解:(1)n与x成一次函数,设n=kx+b,将x=1,m=198,x=3,m=194代入,得:, 解得:,所以n关于x的一次函数表达式

24、为n=-2x+200;当x=10时,n=-210+200=1(2)设销售该产品每天利润为y元,y关于x的函数表达式为:当1x50时,y=-2x2+160 x+4000=-2(x-40)2+7200,-20,当x=40时,y有最大值,最大值是7200;当50 x90时,y=-120 x+12000,-1200,y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元21、(1)商家一次购买这种产品1件时,销售单

25、价恰好为2800元;(2)当0 x10时,y700 x,当10 x1时,y5x2+750 x,当x1时,y300 x;(3)公司应将最低销售单价调整为2875元【解析】(1)设件数为x,则销售单价为3200-5(x-10)元,根据销售单价恰好为2800元,列方程求解;(2)由利润y=(销售单价-成本单价)件数,及销售单价均不低于2800元,按0 x10,10 x50两种情况列出函数关系式;(3)由(2)的函数关系式,利用二次函数的性质求利润的最大值,并求出最大值时x的值,确定销售单价【详解】(1)设商家一次购买这种产品x件时,销售单价恰好为2800元由题意得:32005(x10)2800,解得

26、:x1答:商家一次购买这种产品1件时,销售单价恰好为2800元;(2)设商家一次购买这种产品x件,开发公司所获的利润为y元,由题意得:当0 x10时,y(32002500)x700 x,当10 x1时,y32005(x10)2500 x5x2+750 x,当x1时,y(28002500)x300 x;(3)因为要满足一次购买数量越多,所获利润越大,所以y随x增大而增大,函数y700 x,y300 x均是y随x增大而增大,而y5x2+750 x5(x75)2+28125,在10 x75时,y随x增大而增大由上述分析得x的取值范围为:10 x75时,即一次购买75件时,恰好是最低价,最低价为320

27、05(7510)2875元,答:公司应将最低销售单价调整为2875元【点睛】本题考查了一次、二次函数的性质在实际生活中的应用最大销售利润的问题常利二次函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案22、 (1) 每台A型100元,每台B 150元;(2) 34台A型和66台B型;(3) 70台A型电脑和30台B型电脑的销售利润最大【解析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)据题意得,y=50 x+15000,利用不等式求出x的范围,又因为y=50 x+15000是减函数,所以x取34,y取最大

28、值,(3)据题意得,y=(100+m)x150(100 x),即y=(m50)x+15000,分三种情况讨论,当0m50时,y随x的增大而减小,m=50时,m50=0,y=15000,当50m100时,m500,y随x的增大而增大,分别进行求解【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得 答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元(2)据题意得,y=100 x+150(100 x),即y=50 x+15000,据题意得,100 x2x,解得x33,y=50 x+15000,500,y随x的增大而减小,x为正整数,当x=3

29、4时,y取最大值,则100 x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大(3)据题意得,y=(100+m)x+150(100 x),即y=(m50)x+15000,33x70当0m50时,y随x的增大而减小,当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大m=50时,m50=0,y=15000,即商店购进A型电脑数量满足33x70的整数时,均获得最大利润;当50m100时,m500,y随x的增大而增大,当x=70时,y取得最大值即商店购进70台A型电脑和30台B型电脑的销售利润最大【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次

30、不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况23、(1)4t;(2)当点P在AB边上运动时,PQ与ABC的一边垂直时t的值是t=0或或;(3)S与t的函数关系式为:S=;(4)t的值为或【解析】分析:(1)根据勾股定理求出AC的长,然后由AQ=AC-CQ求解即可;(2)当点P在AB边上运动时,PQ与ABC的一边垂直,有三种情况:当Q在C处,P在A处时,PQBC;当PQAB时;当PQAC时;分别求解即可;(3)当P在AB边上时,即0t1,作PGAC于G,或当P在边BC上时,即1t3,分别根据三角形的面积求函数的解析式即可;(4)当APQ是以PQ为腰的等腰三角形时,有两种情况:当P在边AB上时,作PGAC于G

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论