版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(共10小题,每小题3分,共30分)1如图,AB是O的切线,半径OA=2,OB交O于C,B=30,则劣弧的长是()ABCD2一次函数与反比例函数在同一个坐标系中的图象可能是()ABCD3若a+|a|=0,则等于()A22aB2a2C2D24关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为( )Am94 Bm
2、94 Cm49 DmPB),如果AB的长度为10cm,那么PB的长度为_cm15化简:32-3-24-6-3=_16如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数(k0)的图象上与正方形的一个交点若图中阴影部分的面积等于9,则这个反比例函数的解析式为 三、解答题(共8题,共72分)17(8分)已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DFBE求证:(1)AFDCEB(2)四边形ABCD是平行四边形18(8分)如图,在ABC中,ABAC,点D在边AC上(1)作ADE,使ADEACB,DE交AB于点E;(
3、尺规作图,保留作图痕迹,不写作法)(2)若BC5,点D是AC的中点,求DE的长19(8分)定义:如果把一条抛物线绕它的顶点旋转180得到的抛物线我们称为原抛物线的“孪生抛物线”(1)求抛物线yx22x的“孪生抛物线”的表达式;(2)若抛物线yx22x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C,请判断DCC的形状,并说明理由:(3)已知抛物线yx22x3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由20(8分)今年,我国海关总署严厉打击“
4、洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)21(8分)计算:.化简:.22(10分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直
5、角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围23(12分)如图1,已知抛物线y=x2+bx+c与x轴交于A(1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由(3)如图2,连接BC,PB,PC,设PBC的面积为S求S关于t的函数表达式;求P点到直线BC的距离的
6、最大值,并求出此时点P的坐标24光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合
7、收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】由切线的性质定理得出OAB=90,进而求出AOB=60,再利用弧长公式求出即可【详解】AB是O的切线,OAB=90,半径OA=2,OB交O于C,B=30,AOB=60,劣弧AC的长是:=,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算.2、B【解析】当k0时,一次函数y=kxk的图象过一、三、四象限,反比例函数y=的图象在一、三象限,A、C不符合题意,B符合题意;当k0时,一次函数y=kxk的图象过一、二
8、、四象限,反比例函数y=的图象在二、四象限,D不符合题意故选B3、A【解析】直接利用二次根式的性质化简得出答案【详解】a+|a|=0,|a|=-a,则a0,故原式=2-a-a=2-2a故选A【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键4、B【解析】试题分析:根据题意得=324m0,解得m94故选B考点:根的判别式点睛:本题考查了一元二次方程ax2+bx+c=0(a0,a,b,c为常数)的根的判别式=b2-4ac当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根5、D【解析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案
9、即可【详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(3,1)符合,故选:D【点睛】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.6、D【解析】根据分式有意义的条件即可求出答案【详解】解:由分式有意义的条件可知:,故选:【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7、D【解析】先根据ABCD得出BCD=1,再由CDEF得出DCE=180-2,再把两式相加即可得出结论【详解】解:ABCD,BCD=1,CDEF,DCE=180-2,BCE=BCD+DCE=180-2+1故选:D【点睛】本题考查的是平行线的判
10、定,用到的知识点为:两直线平行,内错角相等,同旁内角互补8、C【解析】作点A关于MN的对称点A,连接AB,交MN于点P,则PA+PB最小,连接OA,AA.点A与A关于MN对称,点A是半圆上的一个三等分点,AON=AON=60,PA=PA,点B是弧AN的中点,BON=30 ,AOB=AON+BON=90,又OA=OA=1,AB=PA+PB=PA+PB=AB=故选:C.9、D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10a9=a,正确;C、x3x5=x8,正确;D、a4+a3=a4+a3,错
11、误,故选D【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.10、B【解析】(1)根据完全平方公式进行解答; (2)根据合并同类项进行解答;(3)根据合并同类项进行解答;(4)根据幂的乘方进行解答.【详解】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、3n+3n+3n=3n+1,正确;C、a3+a3=2a3,故此选项错误;D、(ab)2=a2b,故此选项错误;故选B【点睛】本题考查整数指数幂和整式的运算,解题关键是掌握各自性质.二、填空题(本大题共6个小题,每小题3分,共18分)11、15【解析】根据平行四边形的性质和圆的半径
12、相等得到AOB为等边三角形,根据等腰三角形的三线合一得到BOFAOF30,根据圆周角定理计算即可【详解】解答:连接OB,四边形ABCO是平行四边形,OC=AB,又OA=OB=OC,OA=OB=AB,AOB为等边三角形.OFOC,OCAB,OFAB,BOF=AOF=30.由圆周角定理得 ,故答案为15.12、1【解析】解:在实数1、0、1、1、中,最小的是1,故答案为1【点睛】本题考查实数大小比较13、48【解析】如图,在O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出AKC的度数,利用圆周角定理可求出AOC的度数,由切线性质可知OAD=OCB=90,可知ADC+AOC=1
13、80,即可得答案.【详解】如图,在O上取一点K,连接AK、KC、OA、OC四边形AKCB内接于圆,AKC+ABC=180,ABC=114,AKC=66,AOC=2AKC=132,DA、DC分别切O于A、C两点,OAD=OCB=90,ADC+AOC=180,ADC=48故答案为48【点睛】本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.14、(155)【解析】先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长【详解】P为AB的黄金分割点(APPB)
14、,AP=AB=10=55,PB=ABPA=10(55)=(155)cm故答案为(155)【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中AC=AB15、6【解析】根据二次根式的乘法运算法则以及绝对值的性质和二次根式的化简分别化简整理得出即可:【详解】32-3-24-6-3=6-3-26-3+6=-6,故答案为-616、【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为
15、小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(2a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:反比例函数的图象关于原点对称,阴影部分的面积和正好为小正方形的面积设正方形的边长为b,则b2=9,解得b=3正方形的中心在原点O,直线AB的解析式为:x=2点P(2a,a)在直线AB上,2a=2,解得a=3P(2,3)点P在反比例函数(k0)的图象上,k=23=2此反比例函数的解析式为:三、解答题(共8题,共72分)17、证明见解析【解析】证明:(1)DFBE,DFE=BEF又AF=CE,DF=BE,AFDCEB(S
16、AS)(2)由(1)知AFDCEB,DAC=BCA,AD=BC,ADBC四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明AFDCEB(2)由AFDCEB,容易证明AD=BC且ADBC,可根据一组对边平行且相等的四边形是平行四边形18、(1)作图见解析;(2)【解析】(1)根据作一个角等于已知角的步骤解答即可;(2)由作法可得DEBC,又因为D是AC的中点,可证DE为ABC的中位线,从而运用三角形中位线的性质求解【详解】解:(1)如图,ADE为所作;(2)ADE=ACB,DEBC,点D是AC的中点
17、,DE为ABC的中位线,DE=BC=19、(1)y=-(x-1)=-x+2x-2;(2)等腰Rt,(3)P1(3,-8),P2(-3,-20).【解析】(1)当抛物线绕其顶点旋转180后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C,由点的坐标可知DCC是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2
18、-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)DCC是等腰直角三角形,理由如下:抛物线y=x2-2x+c=(x-1)2+c-1,抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C的坐标为(0,c-2),CC=c-(c-2)=2,点D的横坐标为1,CDC=90,由对称性质可知DC=DC,DCC是等腰直角三角形;(3)抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点
19、为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,C(0,-3),A(3,0),y=x2-2x-3=(x-1)2-4,其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,其中点坐标为(,),设P(a,-a2+2a-5),A、C、P、Q为顶点的四边形为平行四边形,Q(0,a-3),化简得,a2+3a+5=0,0,方程无实数解,此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则APCQ且AP=CQ,点C和点Q在y轴上,点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+23-5=-9+6-
20、5=-8,P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQCP且AQ=CP,点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,P2(-3,-20)原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论20、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(7525)海里【解析】(1)过点B
21、作BHCA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在RtABH中,根据三角函数可求AH,进一步得到AD的长【详解】解:(1)过点B作BHCA交CA的延长线于点H,MBC60,CBA30,NAD30,BAC120,BCA180BACCBA30,BHBCsinBCA15075(海里)答:B点到直线CA的距离是75海里;(2)BD75海里,BH75海里,DH75(海里),BAH180BAC60,在RtABH中,tanBAH,AH25,ADDHAH(7525)(海里)答:执法船从A到D航行了(7525)海里【点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方
22、向角问题能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键21、(1)5;(2)-3x+4【解析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算.(2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式 (2)解:原式【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值.22、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(
23、3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ=90,轴,解得,m=-2或m=1(舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE
24、=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.23、(1)y=x2+2x+1(2)当t=2时,点M的坐标为(1,6);当t2时,不存在,理由见解析;(1)y=x+1;P点到直线BC的距离的最大值为,此时点P的坐标为(,)【解析】【分析】(1)由点A、B的坐标,利用待定系数法
25、即可求出抛物线的表达式;(2)连接PC,交抛物线对称轴l于点E,由点A、B的坐标可得出对称轴l为直线x=1,分t=2和t2两种情况考虑:当t=2时,由抛物线的对称性可得出此时存在点M,使得四边形CDPM是平行四边形,再根据点C的坐标利用平行四边形的性质可求出点P、M的坐标;当t2时,不存在,利用平行四边形对角线互相平分结合CEPE可得出此时不存在符合题意的点M;(1)过点P作PFy轴,交BC于点F,由点B、C的坐标利用待定系数法可求出直线BC的解析式,根据点P的坐标可得出点F的坐标,进而可得出PF的长度,再由三角形的面积公式即可求出S关于t的函数表达式;利用二次函数的性质找出S的最大值,利用勾
26、股定理可求出线段BC的长度,利用面积法可求出P点到直线BC的距离的最大值,再找出此时点P的坐标即可得出结论【详解】(1)将A(1,0)、B(1,0)代入y=x2+bx+c,得,解得:,抛物线的表达式为y=x2+2x+1;(2)在图1中,连接PC,交抛物线对称轴l于点E,抛物线y=x2+bx+c与x轴交于A(1,0),B(1,0)两点,抛物线的对称轴为直线x=1,当t=2时,点C、P关于直线l对称,此时存在点M,使得四边形CDPM是平行四边形,抛物线的表达式为y=x2+2x+1,点C的坐标为(0,1),点P的坐标为(2,1),点M的坐标为(1,6);当t2时,不存在,理由如下:若四边形CDPM是
27、平行四边形,则CE=PE,点C的横坐标为0,点E的横坐标为0,点P的横坐标t=120=2,又t2,不存在;(1)在图2中,过点P作PFy轴,交BC于点F设直线BC的解析式为y=mx+n(m0),将B(1,0)、C(0,1)代入y=mx+n,得,解得:,直线BC的解析式为y=x+1,点P的坐标为(t,t2+2t+1),点F的坐标为(t,t+1),PF=t2+2t+1(t+1)=t2+1t,S=PFOB=t2+t=(t)2+;0,当t=时,S取最大值,最大值为点B的坐标为(1,0),点C的坐标为(0,1),线段BC=,P点到直线BC的距离的最大值为,此时点P的坐标为(,)【点睛】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论