版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算的正确结果是()AB-C1D12下列事件中,必然事件是()A抛掷一枚硬币,正面朝上B打开电视,正在播放广告C体育课上,小刚跑完1000米所用时间为1分钟D袋中只有4个球,且都是红球,任意摸出一球是红球3下列计算正确的是()A2a2a21B(ab)2ab2Ca2+a3a5D(
2、a2)3a64某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A6折B7折C8折D9折5下列运算正确的是()Aa3a2=a6Ba2=C32=D(a+2)(a2)=a2+46下列各式中,正确的是()A(xy)=xyB(2)1=CD7在中,则的值是( )ABCD8在一些美术字中,有的汉字是轴对称图形下面4个汉字中,可以看作是轴对称图形的是()ABCD9如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A28B26C25D2210如图,在ABC中,AC=
3、BC,点D在BC的延长线上,AEBD,点ED在AC同侧,若CAE=118,则B的大小为()A31B32C59D62二、填空题(共7小题,每小题3分,满分21分)11若x2+kx+81是完全平方式,则k的值应是_12若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_13已知方程x25x+2=0的两个解分别为x1、x2,则x1+x2x1x2的值为_14若关于的一元二次方程有实数根,则的取值范围是_15若式子有意义,则实数x的取值范围是_.16在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点
4、A2 的坐标是_17在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,1)、B(1,1),将线段AB平移后得到线段AB,若点A的坐标为(2,2),则点B的坐标为_三、解答题(共7小题,满分69分)18(10分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元台,乙种品牌空调的售价为3500元台请您帮该商场设计一种进货方案,使得在售
5、完这10台空调后获利最大,并求出最大利润19(5分)如图,在ABC中,以AB为直径的O交BC于点D,交CA的延长线于点E,过点D作DHAC于点H,且DH是O的切线,连接DE交AB于点F(1)求证:DC=DE;(2)若AE=1,求O的半径20(8分)先化简,再求值:(m+1),其中m的值从1,0,2中选取21(10分)计算:sin30+(4)0+|22(10分)某校有3000名学生为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图种类ABCDEF上学方式电动车私家
6、车公共交通自行车步行其他某校部分学生主要上学方式扇形统计图某校部分学生主要上学方式条形统计图根据以上信息,回答下列问题:参与本次问卷调查的学生共有_人,其中选择B类的人数有_人在扇形统计图中,求E类对应的扇形圆心角的度数,并补全条形统计图若将A、C、D、E这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数23(12分)如图所示,内接于圆O,于D;(1)如图1,当AB为直径,求证:;(2)如图2,当AB为非直径的弦,连接OB,则(1)的结论是否成立?若成立请证明,不成立说明由;(3)如图3,在(2)的条件下,作于E,交CD于点F,连接ED,且,若,求CF的长度24(14分)AB
7、C内接于O,AC为O的直径,A60,点D在AC上,连接BD作等边三角形BDE,连接OE如图1,求证:OEAD;如图2,连接CE,求证:OCEABD;如图3,在(2)的条件下,延长EO交O于点G,在OG上取点F,使OF2OE,延长BD到点M使BDDM,连接MF,若tanBMF,OD3,求线段CE的长参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据有理数加法的运算方法,求出算式的正确结果是多少即可【详解】原式 故选:D.【点睛】此题主要考查了有理数的加法的运算方法,要熟练掌握,解答此题的关键是要明确:同号相加,取相同符号,并把绝对值相加绝对值不等的异号加减,取
8、绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值互为相反数的两个数相加得1一个数同1相加,仍得这个数2、D【解析】试题解析:A. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C. 是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D. 袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.3、D【解析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案.【详解】A、2a2
9、a2a2,故A错误;B、(ab)2a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3a6,故D正确,故选D【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键4、B【解析】设可打x折,则有1200-8008005%,解得x1即最多打1折故选B【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解5、C【解析】直接利用同底数幂的乘除运算法则、负指数幂的性质、二次根式的加减运算法则、平方差公式分别计算即可得出答
10、案【详解】A、a3a2=a5,故A选项错误;B、a2=,故B选项错误;C、32=,故C选项正确;D、(a+2)(a2)=a24,故D选项错误,故选C【点睛】本题考查了同底数幂的乘除运算以及负指数幂的性质以及二次根式的加减运算、平方差公式,正确掌握相关运算法则是解题关键6、B【解析】A.括号前是负号去括号都变号; B负次方就是该数次方后的倒数,再根据前面两个负号为正;C. 两个负号为正;D.三次根号和二次根号的算法【详解】A选项,(xy)=x+y,故A错误;B选项, (2)1=,故B正确;C选项,故C错误;D选项,22,故D错误【点睛】本题考查去括号法则的应用,分式的性质,二次根式的算法,熟记知
11、识点是解题的关键7、D【解析】首先根据勾股定理求得AC的长,然后利用正弦函数的定义即可求解【详解】C=90,BC=1,AB=4,故选:D【点睛】本题考查了三角函数的定义,求锐角的三角函数值的方法:利用锐角三角函数的定义,转化成直角三角形的边长的比8、A【解析】根据轴对称图形的概念判断即可【详解】A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形故选:A【点睛】本题考查的是轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合9、A【解析】如图,运用矩形的性质首先证明CN=3,C=90;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,
12、求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答10、A【解析】根据等腰三角形的性质得出BCAB,再利用平行线的性质解答即可【详解】在ABC中,ACBC,BCAB,AEBD,CAE118,BCABCAE180,即2B180118,
13、解得:B31,故选A【点睛】此题考查等腰三角形的性质,关键是根据等腰三角形的性质得出BCAB二、填空题(共7小题,每小题3分,满分21分)11、1【解析】试题分析:利用完全平方公式的结构特征判断即可确定出k的值解:x2+kx+81是完全平方式,k=1故答案为1考点:完全平方式12、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大13、1【解析】解:根据题意可得x1+x2=5,x1x2=2,x1+x2x1x2=
14、52=1故答案为:1点睛:本题主要考查了根据与系数的关系,利用一元二次方程的两个根x1、x2具有这样的关系:x1+x2=,x1x2=是解题的关键14、【解析】由题意可得,=9-4m0,由此求得m的范围【详解】关于x的一元二次方程x2-3x+m=0有实数根,=9-4m0,求得 m.故答案为:【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.15、x2且x1【解析】根据被开方数大于等于1,分母不等于1列式计算即可得解【详解】解:由题意得,且x1,解得且x1故答案为且x1【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数16、(-
15、1, -6)【解析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案【详解】点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,A1(-1,-2),将点A1向下平移4个单位,得到点A2,点A2的坐标是:(-1,-6)故答案为:(-1, -6)【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数17、 (5,4)【解析】试题解析:由于图形平移过程中,对应点的平移规律相同,由点A到点A可知,点的横坐标减6,纵坐标加3
16、,故点B的坐标为 即 故答案为: 三、解答题(共7小题,满分69分)18、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】(1)设甲种品牌空调的进货价为x元/台,则乙种品牌空调的进货价为1.2x元/台,根据数量=总价单价可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a台,所获得的利润为y元,则购进乙种品牌空调(10-a)台,根据总价=单价数量结合总价不超过16000 元,即可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由总利润=单台利润购进数量即
17、可得出y关于a的函数关系式,利用一次函数的性质即可解决最值问题【详解】(1)由(1)设甲种品牌的进价为x元,则乙种品牌空调的进价为(1+20%)x元,由题意,得 ,解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,由题意,得1500a+1800(10-a)16000,解得 a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-7000,则w随a
18、的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价单价列出关于x的分式方程;(2)根据总利润=单台利润购进数量找出y关于a的函数关系式19、 (1)见解析;(2).【解析】(1)连接OD,由DHAC,DH是O的切线,然后由平行线的判定与性质可证C=ODB,由圆周角定理可得OBD=DEC,进而C=DEC,可证结论成立;(2)证明OFDAFE,根据相似三角形的性质即可求出圆的半径.【详解】(1)证明:连接
19、OD,由题意得:DHAC,由且DH是O的切线,ODH=DHA=90,ODH=DHA=90,ODCA,C=ODB,OD=OB,OBD=ODB,OBD=C,OBD=DEC,C=DEC,DC=DE;(2)解:由(1)可知:ODAC,ODF=AEF,OFD=AFE,OFDAFE,AE=1,OD=,O的半径为【点睛】本题考查了切线的性质,平行线的判定与性质,等腰三角形的性质与判定,圆周角定理的推论,相似三角形的判定与性质,难度中等,熟练掌握各知识点是解答本题的关键.20、 ,当m=0时,原式=1【解析】原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分
20、母不为零的性质,不等于-1、2,将代入原式即可解出答案.【详解】解:原式,且,当时,原式【点睛】本题主要考查分数的性质、通分,四则运算法则以及倒数.21、1.【解析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值详解:原式=2+1+=1点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键22、 (1)450、63; 36,图见解析; (3)2460 人【解析】(1)根据“骑电动车”上下的人数除以所占的百分比,即可得到调查学生数;用调查学生数乘以选择类的人数所占的百分比,即可求出选择类的人数.(2)求出类的百分比,乘以即可求出类对应
21、的扇形圆心角的度数;由总学生数求出选择公共交通的人数,补全统计图即可;(3)由总人数乘以“绿色出行”的百分比,即可得到结果【详解】(1) 参与本次问卷调查的学生共有:(人);选择类的人数有: 故答案为450、63;(2)类所占的百分比为: 类对应的扇形圆心角的度数为: 选择类的人数为:(人).补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为3000(1-14%-4%)=2460 人【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小23、(1
22、)见解析;(2)成立;(3)【解析】(1)根据圆周角定理求出ACB=90,求出ADC=90,再根据三角形内角和定理求出即可;(2)根据圆周角定理求出BOC=2A,求出OBC=90-A和ACD=90-A即可;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,在AD上取DG=BD,延长CG交AK于M,延长KO交O于N,连接CN、AN,求出关于a的方程,再求出a即可【详解】(1)证明:AB为直径,于D,;(2)成立,证明:连接OC,由圆周角定理得:,;(3)分别延长AE、CD交O于H、K,连接HK、CH、AK,根据圆周角定理得:,由三角形内角和定理得:,同理,在AD上取,延长CG交AK于M,则,延长KO交O于N,连接CN、AN,则,四边形CGAN是平行四边形,作于T,则T为CK的中点,O为KN的中点,由勾股定理得:,作直径HS,连接KS,由勾股定理得:,设,解得:,【点睛】本题考查了垂径定理、解直角三角形、等腰三角形的性质、圆周角定理、勾股定理等知识点,能综合运用知识点进行推理是解此题的关键,综合性比较强
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 4年个人年终工作总结暨年工作计划
- 2024幼儿园小班保教工作计划范文
- 小学新学期教师教学工作计划
- 临沂大学《新媒体动画艺术》2021-2022学年第一学期期末试卷
- 临沂大学《图形设计基础》2021-2022学年第一学期期末试卷
- 幼儿园园本教研计划模板
- 聊城大学东昌学院《动画速写》2021-2022学年第一学期期末试卷
- 聊城大学《环境艺术概论》2022-2023学年第一学期期末试卷
- 2024下半年度工作计划
- 主题休闲会所项目计划书
- 农业统计课件
- 替班换班登记表
- 26个英文字母手写体示范
- 阿利的红斗篷 完整版课件PPT
- 档案管理台账模版
- 通信线路和管道工程施工组织方案要点
- 四人的剧本杀
- 第31课大象和他的长鼻子
- 1378管理英语3-国家开放大学2022年1月(2021秋)期末考试真题-开放本科
- XYQ3C说明书教学文案
- 电力工程公司安全管理制度完整篇.doc
评论
0/150
提交评论