




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1计算的结果是( )ABCD22国家主席习近平提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A13.75106 B13.7510
2、5 C1.375108 D1.3751093济南市某天的气温:-58,则当天最高与最低的温差为( )A13B3C-13D-34在平面直角坐标系中,函数的图象经过( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限5如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(1,3)、(4,1)、(2,1),将ABC沿一确定方向平移得到A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ()AA1(4,4),C1(3,2)BA1(3,3),C1(2,1)CA1(4,3),C1(2,3)DA1(3,4),C1(2,2)6已知O及O外一点P,过点P作出
3、O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:连接OP,作OP的垂直平分线l,交OP于点A;以点A为圆心、OA为半径画弧、交O于点M;作直线PM,则直线PM即为所求(如图1)乙:让直角三角板的一条直角边始终经过点P;调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在O上,记这时直角顶点的位置为点M;作直线PM,则直线PM即为所求(如图2)对于两人的作业,下列说法正确的是( )A甲乙都对B甲乙都不对C甲对,乙不对D甲不对,已对7某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽
4、到同一个小区的概率是()ABCD8如图,两个同心圆(圆心相同半径不同的圆)的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为( )A2cmB4cmC6cmD8cm9如图,ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则C的半径为( )A2.3B2.4C2.5D2.610如图,O的直径AB与弦CD的延长线交于点E,若DE=OB,AOC=84,则E等于()A42B28C21D20二、填空题(共7小题,每小题3分,满分21分)11一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_cm12若式子在实数范围内有意义,则x的取值范围是 13数据:2,5,4,
5、2,2的中位数是_,众数是_,方差是_14如图,与是以点为位似中心的位似图形,相似比为,若点的坐标是,则点的坐标是_15将两块全等的含30角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将RtBCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为 时,四边ABC1D1为矩形;当点B的移动距离为 时,四边形ABC1D1为菱形16如图,AB是圆O的直径,AC是圆O的弦,AB=2,BAC=30在图中画出弦AD,使AD=1,则CAD的度数为_17如图,某水库大坝的横断面是梯形,坝顶宽米,坝高是20米,背水坡的坡角为30,迎水坡的坡度为12,那么坝底的长度等于_米(结果保留根号)三、解答题(
6、共7小题,满分69分)18(10分)如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F(1)证明与推断:求证:四边形CEGF是正方形;推断:的值为 :(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转角(045),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H若AG=6,GH=2,则BC= 19(5分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销
7、售量是A款的45,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.20(8分)如图,已知ABCD作B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若ABCD的周长为10,CD=2,求DE的长。21(10分)如图,一艘轮船位于灯塔P的北偏东60方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45方向的B处,求此时轮船所在的B处与灯塔P的距离(参考数据:2.449,结果保留整数)22(10分)化
8、简:.23(12分)问题探究(1)如图,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使APD为等腰三角形,那么请画出满足条件的一个等腰三角形APD,并求出此时BP的长;(2)如图,在ABC中,ABC=60,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使EQF=90,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使AMB大约为60,就可以让监控装置的效果达到最佳,已知A=E=D=90,AB=270m,AE=400m,ED=285
9、m,CD=340m,问在线段CD上是否存在点M,使AMB=60?若存在,请求出符合条件的DM的长,若不存在,请说明理由24(14分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元今年的总收入和总支出计划各是多少万元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式=32=3=.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.2、D【解析】用科学记数法表示较大的数时,一般形式为a1
10、0n,其中1|a|10,n为整数,据此判断即可【详解】13.75亿=1.375109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.3、A【解析】由题意可知,当天最高温与最低温的温差为8-(-5)=13,故选A.4、A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b当k0,bO时,图象过一、二、三象限,据此作答即可【详解】一次函数y=3x+1的k=30,b=10,图象过第一、二、三象限,故选A【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.5、A【解析】分析:根据B点的变化,确定平移的规律,将ABC向右移5个单位
11、、上移1个单位,然后确定A、C平移后的坐标即可.详解:由点B(4,1)的对应点B1的坐标是(1,2)知,需将ABC向右移5个单位、上移1个单位,则点A(1,3)的对应点A1的坐标为(4,4)、点C(2,1)的对应点C1的坐标为(3,2),故选A点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.6、A【解析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到O=AMO,AMP=MPA,所以OMA+AMP=O+MPA=90,得出MP是O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,
12、所以OMP=90,得到MP是O的切线【详解】证明:(1)如图1,连接OM,OA连接OP,作OP的垂直平分线l,交OP于点A,OA=AP以点A为圆心、OA为半径画弧、交O于点M;OA=MA=AP,O=AMO,AMP=MPA,OMA+AMP=O+MPA=90,OMMP,MP是O的切线;(1)如图1直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在O上,OMP=90,MP是O的切线故两位同学的作法都正确故选A【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性7、C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可详
13、解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为.故选:C点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比8、B【解析】首先连接OC,AO,由切线的性质,可得OCAB,根据已知条件可得:OA=2OC,进而求出AOC的度
14、数,则圆心角AOB可求,根据弧长公式即可求出劣弧AB的长【详解】解:如图,连接OC,AO,大圆的一条弦AB与小圆相切,OCAB,OA=6,OC=3,OA=2OC,A=30,AOC=60,AOB=120,劣弧AB的长= =4,故选B【点睛】本题考查切线的性质,弧长公式,熟练掌握切线的性质是解题关键9、B【解析】试题分析:在ABC中,AB=5,BC=3,AC=4,AC2+BC2=32+42=52=AB2,C=90,如图:设切点为D,连接CD,AB是C的切线,CDAB,SABC=ACBC=ABCD,ACBC=ABCD,即CD=,C的半径为,故选B考点:圆的切线的性质;勾股定理10、B【解析】利用OB
15、=DE,OB=OD得到DO=DE,则E=DOE,根据三角形外角性质得1=DOE+E,所以1=2E,同理得到AOC=C+E=3E,然后利用E=AOC进行计算即可【详解】解:连结OD,如图,OB=DE,OB=OD,DO=DE,E=DOE,1=DOE+E,1=2E,而OC=OD,C=1,C=2E,AOC=C+E=3E,E=AOC=84=28故选:B【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)也考查了等腰三角形的性质二、填空题(共7小题,每小题3分,满分21分)11、1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详
16、解】试题解析:当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm故填1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.12、【解析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.故答案为13、2 2 1.1 【解析】先将这组数据从小到大排列,再找出最中间的数,即可得出中位数;找出这组数据中最多的数则是众数;先求出这组数据的平均数,再根据方差公式S2=(x1-)2+(x2-)2+(
17、xn-)2进行计算即可【详解】解:把这组数据从小到大排列为:2,2,2,4,5,最中间的数是2,则中位数是2;众数为2;这组数据的平均数是(2+2+2+4+5)5=3,方差是: (23)2+(23)2+(23)2+(43)2+(53)2=1.1.故答案为2,2,1.1.【点睛】本题考查了中位数、众数与方差的定义,解题的关键是熟练的掌握中位数、众数与方差的定义.14、(2,2) 【解析】分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可详解:与是以点为位似中心的位似图形, ,若
18、点的坐标是, 过点作交于点E. 点的坐标为:与的相似比为,点的坐标为:即点的坐标为:故答案为:点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.15、,【解析】试题分析:当点B的移动距离为时,C1BB1=60,则ABC1=90,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B的移动距离为时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC1D1为菱形试题解析:如图:当四边形ABC1D是矩形时,B1BC1=9030=60,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为矩形;当四边形ABC1D是菱形时,ABD1=C1B
19、D1=30,B1C1=1,BB1=,当点B的移动距离为时,四边形ABC1D1为菱形考点:1菱形的判定;2矩形的判定;3平移的性质16、30或1【解析】根据题意作图,由AB是圆O的直径,可得ADB=ADB=1,继而可求得DAB的度数,则可求得答案【详解】解:如图,AB是圆O的直径,ADB=ADB=1,AD=AD=1,AB=2,cosDAB=cosDAB=,DAB=DAB=60,CAB=30,CAD=30,CAD=1CAD的度数为:30或1故答案为30或1【点睛】本题考查圆周角定理;含30度角的直角三角形17、【解析】过梯形上底的两个顶点向下底引垂线、,得到两个直角三角形和一个矩形,分别解、求得线
20、段、的长,然后与相加即可求得的长【详解】如图,作,垂足分别为点E,F,则四边形是矩形由题意得,米,米,斜坡的坡度为12,在中,米在RtDCF中,斜坡的坡度为12,米,(米)坝底的长度等于米故答案为【点睛】此题考查了解直角三角形的应用坡度坡角问题,难度适中,解答本题的关键是构造直角三角形和矩形,注意理解坡度与坡角的定义三、解答题(共7小题,满分69分)18、(1)四边形CEGF是正方形;(2)线段AG与BE之间的数量关系为AG=BE;(3)3【解析】(1)由、结合可得四边形CEGF是矩形,再由即可得证;由正方形性质知、,据此可得、,利用平行线分线段成比例定理可得;(2)连接CG,只需证即可得;(
21、3)证得,设,知,由得、,由可得a的值【详解】(1)四边形ABCD是正方形,BCD=90,BCA=45,GEBC、GFCD,CEG=CFG=ECF=90,四边形CEGF是矩形,CGE=ECG=45,EG=EC,四边形CEGF是正方形;由知四边形CEGF是正方形,CEG=B=90,ECG=45,GEAB,故答案为;(2)连接CG,由旋转性质知BCE=ACG=,在RtCEG和RtCBA中,=、=,=,ACGBCE,线段AG与BE之间的数量关系为AG=BE;(3)CEF=45,点B、E、F三点共线,BEC=135,ACGBCE,AGC=BEC=135,AGH=CAH=45,CHA=AHG,AHGCH
22、A,设BC=CD=AD=a,则AC=a,则由得,AH=a,则DH=ADAH=a,CH=a,由得,解得:a=3,即BC=3,故答案为3【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.19、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.【解析】试题分析:(1)用一月份A款的数量乘以45,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根
23、据条形统计图和折线统计图所给出的数据,提出合理的建议即可试题解析:(1)根据题意,用一月份A款的数量乘以45:5045=40(双)即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:50 x+40y=4000060 x+52y=50000,解得:x=400y=500则三月份的总销售额是:40065+50026=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋考点:1.折线统计图;2.条形统计图20、(1)作图见解析;(2)1【解析】(1)以点B为圆心,任意长为半径画
24、弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得AEB=EBC,利用角平分线即得ABE=EBC,即证 AEB=ABE .根据等角对等边可得AB=AE=2,从而求出ED的长.【详解】(1)解:如图所示:(2)解:平行四边形ABCD的周长为10AB+AD=5AD/BCAEB=EBC又BE平分ABCABE=EBCAEB=ABEAB=AE=2ED=AD-AE=3-2=1【点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则21、此时轮船所在的
25、B处与灯塔P的距离是98海里【解析】【分析】过点P作PCAB,则在RtAPC中易得PC的长,再在直角BPC中求出PB的长即可【详解】作PCAB于C点,APC=30,BPC=45 ,AP=80(海里),在RtAPC中,cosAPC=,PC=PAcosAPC=40(海里),在RtPCB中,cosBPC=,PB=4098(海里),答:此时轮船所在的B处与灯塔P的距离是98海里【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.22、【解析】原式第一项利用完全平方公式化简,第二项利用单项式乘多项式法则计算,去括号合并即可得到结果【详解】解:原式23、(1)1;2-;(1
26、)4+;(4)(200-25-40)米【解析】(1)由于PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题(1)以EF为直径作O,易证O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长(4)要满足AMB=40,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长【详解】(1)作AD的垂直平分线交BC于点P,如图,则PA=PDPAD是等腰三角形四边形ABCD是矩形,AB=DC,B=C
27、=90PA=PD,AB=DC,RtABPRtDCP(HL)BP=CPBC=2,BP=CP=1以点D为圆心,AD为半径画弧,交BC于点P,如图,则DA=DPPAD是等腰三角形四边形ABCD是矩形,AD=BC,AB=DC,C=90AB=4,BC=2,DC=4,DP=2CP=BP=2-点A为圆心,AD为半径画弧,交BC于点P,如图,则AD=APPAD是等腰三角形同理可得:BP=综上所述:在等腰三角形ADP中,若PA=PD,则BP=1;若DP=DA,则BP=2-;若AP=AD,则BP=(1)E、F分别为边AB、AC的中点,EFBC,EF=BCBC=11,EF=4以EF为直径作O,过点O作OQBC,垂足为Q,连接EQ、FQ,如图ADBC,AD=4,EF与BC之间的距离为4OQ=4OQ=OE=4O与BC相切,切点为QEF为O的直径, EQF=90过点E作E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届湖北黄冈高考考前模拟化学试题含解析
- 2025年面板检测系统项目合作计划书
- 2025届湖北省黄冈市新联考高三第一次调研测试化学试卷含解析
- 五四红旗团支部
- 2025年空心桨叶干燥机项目建议书
- 急救护理学蛇咬伤
- 陕西铁路工程职业技术学院《品牌与互动营销》2023-2024学年第二学期期末试卷
- 隆昌县2025届五年级数学第二学期期末统考试题含答案
- 雅安职业技术学院《基本体操与健美操》2023-2024学年第一学期期末试卷
- 集美大学《弹性力学基础与有限元》2023-2024学年第一学期期末试卷
- GB/T 37910.1-2019焊缝无损检测射线检测验收等级第1部分:钢、镍、钛及其合金
- 每日30字练字格电子版
- 雷锋叔叔你在哪里教学反思
- (新版)国家统计执法证资格考试备考题库(含答案)
- 项目验收单标准模板
- 24式太极拳教案(1~4课)
- 小学 三年级 心理健康《最好的老师-兴趣的作用》教学设计
- DB12T 1040-2021 建筑工程规划管理技术规范
- 中国绿色经济发展之路(PPT-37张)课件
- G322-1钢筋砼过梁
- 客房控制系统——RCU系统培训PPT通用通用课件
评论
0/150
提交评论