版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、12.2直角三角形全等的判定(HL)忆一忆1、全等三角形的对应边 -,,对应角-相等相等2、判定三角形全等的方法有:SAS、ASA、AAS、SSS直角边直角边斜边认识直角三角形RtABC 舞台背景的形状是两个直角三角形,工作人员想知道两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住,无法测量。(1)你能帮他想个办法吗?根据SAS可测量其余两边与这两边的夹角。根据ASA,AAS可测量对应一边和一锐角 工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等。于是,他就肯定“两个直角三角形是全等的”。你相信这个结论吗?(2)如果他只带一个卷尺,能完成这个任务吗?让我们来验
2、证这个结论。斜边和一条直角边对应相等两个直角三角形全等动动手 做一做用三角板和圆规,画一个RtABC,使得C=90,一直角边CA=4cm,斜边AB=5cm.ABC5cm4cm动动手 做一做Step1:画MCN=90;CNM动动手 做一做Step1:画MCN=90;CNMStep2:在射线CM上截取CA=4cm;AStep1:画MCN=90;Step2:在射线CM上截取CA=4cm;动动手 做一做Step3:以A为圆心,5cm为半径画弧,交射线CN于B;CNMAB1:画MCN=90;CNM2:在射线CM上截取CA=4cm;B动动手 做一做3:以A为圆心,5cm为半径画弧,交射线CN于B;A4:连
3、结AB;ABC即为所要画的三角形动动手 做一做 比比看把我们刚画好的直角三角形剪下来,和同桌的比比看,这些直角三角形有怎样的关系呢?你发现了什么?RtABCABC5cm4cmAB C 5cm4cm斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边、直角边”或“HL”前提条件1条件2斜边、直角边公理 (HL)ABCA BC 在RtABC和Rt 中AB=BC=RtABCC=C=90有斜边和一条直角边对应相等的两个直角三角形全等.前提条件1条件2判断:满足下列条件的两个三角形是否全等?为什么?1.一个锐角及这个锐角的对边对应相等的两个直角三角形.全等(AAS)2.一个锐角及
4、这个锐角相邻的直角边对应相等的两个直角三角形.全等判断:满足下列条件的两个三角形是否全等?为什么?( ASA)3.两直角边对应相等的两个直角三角形.全等判断:满足下列条件的两个三角形是否全等?为什么?( SAS)4.有两边对应相等的两个直角三角形.全等判断:满足下列条件的两个三角形是否全等?为什么?情况1:全等情况2:全等(SAS)( HL)例1已知:如图, ABC中,AB=AC,AD是高求证:BD=CD ;BAD=CADABCD证明:AD是高 ADB=ADC=90 在RtADB和RtADC中AB=ACAD=AD RtADBRtADC(HL)BD=CD,BAD=CAD等腰三角形三线合一例5已知
5、:如图,在ABC和ABD中,ACBC, ADBD,垂足分别为C,D,AC=BD,求证: BC=AD。ABDC证明: ACBC, ADBD C=D=90 在RtABC和RtBAD中 RtABCRtBAD (HL)AAB=BAAC=BDBC=AD思维拓展已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEFABCPDEFQ变式1:若把BACEDF,改为BCEF ,ABC与DEF全等吗?请说明思路。已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEFABCPDEFQ变式1:若把B
6、ACEDF,改为BCEF ,ABC与DEF全等吗?请说明思路。变式2:若把BACEDF,改为AC=DF,ABC与DEF全等吗?请说明思路。思维拓展已知:如图,在ABC和DEF中,AP、DQ分别是高,并且AB=DE,AP=DQ,BAC=EDF,求证:ABCDEFABCPDEFQ变式1:若把BACEDF,改为BCEF ,ABC与DEF全等吗?请说明思路。变式2:若把BACEDF,改为AC=DF,ABC与DEF全等吗?请说明思路。变式3:请你把例题中的BACEDF改为另一个适当条件,使ABC与DEF仍能全等。试证明。思维拓展小结“SAS”“ ASA ”“ AAS ”“ SSS ”“ SAS ”“ A
7、SA ”“ AAS ”“ HL ”灵活运用各种方法证明直角三角形全等应用“ SSS ”已知:如图,D是ABC的BC边上的中点,DEAC,DFAB,垂足分别为E,F,且DE=DF.求证: ABC是等腰三角形. DBCAFE学以致用小结:本节课你有何收获?还有哪些困惑?同学们再见1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。3、命运给你一个比别人低的起点是想告诉你,让你用你的一生去奋斗出一个绝地反击的故事,所以有什么理由不努力!4、心中没有过分的贪求,自然苦就少。口里不说多余的话,自然祸就少。腹内
8、的食物能减少,自然病就少。思绪中没有过分欲,自然忧就少。大悲是无泪的,同样大悟无言。缘来尽量要惜,缘尽就放。人生本来就空,对人家笑笑,对自己笑笑,笑着看天下,看日出日落,花谢花开,岂不自在,哪里来的尘埃!5、心情就像衣服,脏了就拿去洗洗,晒晒,阳光自然就会蔓延开来。阳光那么好,何必自寻烦恼,过好每一个当下,一万个美丽的未来抵不过一个温暖的现在。6、无论你正遭遇着什么,你都要从落魄中站起来重振旗鼓,要继续保持热忱,要继续保持微笑,就像从未受伤过一样。7、生命的美丽,永远展现在她的进取之中;就像大树的美丽,是展现在它负势向上高耸入云的蓬勃生机中;像雄鹰的美丽,是展现在它搏风击雨如苍天之魂的翱翔中;
9、像江河的美丽,是展现在它波涛汹涌一泻千里的奔流中。8、有些事,不可避免地发生,阴晴圆缺皆有规律,我们只能坦然地接受;有些事,只要你愿意努力,矢志不渝地付出,就能慢慢改变它的轨迹。9、与其埋怨世界,不如改变自己。管好自己的心,做好自己的事,比什么都强。人生无完美,曲折亦风景。别把失去看得过重,放弃是另一种拥有;不要经常艳羡他人,人做到了,心悟到了,相信属于你的风景就在下一个拐弯处。10、有些事想开了,你就会明白,在世上,你就是你,你痛痛你自己,你累累你自己,就算有人同情你,那又怎样,最后收拾残局的还是要靠你自己。11、花开不是为了花落,而是为了开的更加灿烂。12、随随便便浪费的时间,再也不能赢回
10、来。13、不管从什么时候开始,重要的是开始以后不要停止;不管在什么时候结束,重要的是结束以后不要后悔。14、当你决定坚持一件事情,全世界都会为你让路。15、只有在开水里,茶叶才能展开生命浓郁的香气。16、别想一下造出大海,必须先由小河川开始。17、不要让未来的你,讨厌现在的自己,困惑谁都有,但成功只配得上勇敢的行动派。18、人生最大的喜悦是每个人都说你做不到,你却完成它了!19、如果你真的愿意为自己的梦想去努力,最差的结果,不过是大器晚成。20、不忘初心,方得始终。11、失败不可怕,可怕的是从来没有努力过,还怡然自得地安慰自己,连一点点的懊悔都被麻木所掩盖下去。不能怕,没什么比自己背叛自己更可
11、怕。12、跌倒了,一定要爬起来。不爬起来,别人会看不起你,你自己也会失去机会。在人前微笑,在人后落泪,可这是每个人都要学会的成长。13、要相信,这个世界上永远能够依靠的只有你自己。所以,管别人怎么看,坚持自己的坚持,直到坚持不下去为止。14、也许你想要的未来在别人眼里不值一提,也许你已经很努力了可还是有人不满意,也许你的理想离你的距离从来没有拉近过.但请你继续向前走,因为别人看不到你的努力,你却始终看得见自己。15、所有的辉煌和伟大,一定伴随着挫折和跌倒;所有的风光背后,一定都是一串串揉和着泪水和汗水的脚印。16、成功的反义词不是失败,而是从未行动。有一天你总会明白,遗憾比失败更让你难以面对。17、没有一件事情可以一下子把你打垮,也不会有一件事情可以让你一步登天,慢慢走,慢慢看,生命是一个慢慢累积的过程。18、努力也许不等于成功,可是那段追逐梦想的努力,会让你找到一个更好的自己,一个沉默努力充实安静的自己。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加油站建设项目可行性研究报告
- 《描写春天的句子》课件
- 《社会语言学》课件
- 房产建筑工程
- (部编版八年级《政治》课件)第1课时-法不可违
- 《简单的电路计算》课件
- 《柠檬酸发酵机制》课件
- 机构编制培训课件(机构编制政策要点及纪律要求)
- 中型电力施工合同模板
- 用户体验研究保密协议管理办法
- 2024年肠道传染病培训课件:疾病预防新视角
- 2024年度拼多多店铺托管经营合同2篇
- 2023年北京肿瘤医院(含社会人员)招聘笔试真题
- 2024年化学检验员(中级工)技能鉴定考试题库(附答案)
- 旅行社分店加盟协议书(2篇)
- 勘察工作质量及保证措施
- 城镇燃气经营安全重大隐患判定及燃气安全管理专题培训
- 个人和企业间资金拆借合同
- 重大火灾隐患判定方法
- 2024年除雪服务定制协议样本版
- 七年级地理上册 3.2海陆变迁说课稿 (新版)商务星球版
评论
0/150
提交评论