版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第八章 点的一般运动与刚体的基本运动 第一节 运动分析概述 第二节 描述点的一般运动的方法第三节 刚体的基本运动 第四节 问题讨论与说明 第1页,共18页。第一节 运动分析概述 一、运动分析的内容 运动分析是研究物体在空间位置随时间变化的几何性质,提出对物体进行运动分析的一般方法。 1、对于既定的运动,选择合适的参量进行数学描述,即列写运动方程。 2、研究表征运动几何性质的基本物理量,如速度、加速度、角速度与角加速度等。 3、研究运动分解与合成的规律。 二、运动分析的目的、意义 一是作为动力学的基础;二是作为机械设计和各专业专业课基础三、运动分析的模型及基本形式 (一)运动分析的基本模型 点:
2、不计几何形状和尺寸的理想化物体。 刚体:具有确切的形状和大小,并且在外力作用永不变形的物体。 在研究空间站的轨道运动时,可以将其简化为点去研究。在研究空间站的姿态运动时,必需考虑它的大小及形状,即必需作为具有一定大小和形状的刚体研究。第2页,共18页。 (二)运动分析基本形式 1、点运动形式 分为直线运动和曲线运动 2、刚体的运动形式 平移:刚体运动中,其上任意直线永远平行于自己的初始位移。(如沿直线运动的活塞B) 定轴转动:刚体运动中,其上或外延伸部分有一直线始终保持不动。(如曲柄OA绕O点连杆AB绕B点的运动) 平面运动:刚体运动中,其上各点到某一固定平面的距离保持不变。(如右图OA、AB
3、、B在OAB平面的运动) 定点转动:刚体运动中,其上始终有一点永远保持不动。(例如,陀螺的运动) 一般运动:刚体最一般的运动。 我们所讨论的是刚体的平移运动、定轴转动、平面运动。 四、运动学与工程运动分析回目录第3页,共18页。第二节 描述点的一般运动的方法一、矢径法 设动点M在空间作曲线运动,任选一固定点O作为参考点,则点M在任一瞬时的位置可用其位置矢量,即O点到点M的矢径确定,即为点的矢量形式的运动方程 其速度为矢径对时间变化率,即 点的加速度为速度对时间的变化率,即 第4页,共18页。二、直角坐标法 设动点M在空间运动,通过固定点O 建立一直角坐标系,如图,则点M在任一瞬时间的位置可以用
4、它的坐标(x、y、z)唯一确定。在点M 运动时,其坐标是时间t的连续函数,即得到直角坐标法描述点运动的运动方程 其速度为 将速度向三个坐标轴方向分解,得速度的三个分量为第5页,共18页。 加速度为 加速度在三个坐标轴上的分量为 第6页,共18页。三、自然法 以动点的轨迹作为曲线坐标来确定点的位置的方法称为自然法。 (一)运动方程 弧坐标随时间变化的函数,即 (二)速度 又因为 所以即点的速度的大小是弧坐标对时间的一阶导数,方向沿轨迹的切线方向。第7页,共18页。 (三)加速度 根据加速度定义有 可证明: 加速度表达式中右端第一项表示速度方向不变,仅由于速度大小变化引起的速度变化率。它是加速度沿
5、切线方向的一个分量,称为切向加速度,即 右端第二项表示速度大小不变,仅由于速度方向所改变的速度变化率,它是加速度沿法线方向的一个分量,称为法向加速度,即 所以,全加速度为 第8页,共18页。 例 设动点 M 沿螺旋线 z=2sin4t、y=2cos4t、z=4t 运动。求在任一瞬时的速度、加速度的大小及轨迹的曲率半径。(x、y、z 的单位为 m,时间t的单位为 s) 解: 已知动点 M 的直角坐标形式的运动方程,可求点 M 的速度在各坐标上的投影为 点 M 的速度大小为 点 M 的加速度在各坐标轴上的投影为第9页,共18页。点 M 的加速度的大小为 又因为 所以 回目录第10页,共18页。第三
6、节 刚体的基本运动 一、刚体的平行移动 刚体在运动过程中,如果其体内任一直线始终保持与初始位置平行,这种运动称为平行移动。 如右图,平台在平行双曲柄机构带动下的运动,其体内任一直线始终与原来位置平行。 运动规律 在作平动的刚体上任选两点 A、B,设其矢径分别为rA、rB,得其关系将等式两端对时间 t 求导,因为 所以可得 再对时间 t 求导,可得 结论:刚体平动时,其上各点的轨迹完全相同,切在同一瞬时,其上各点的速度和加速度完全相同。 因此,刚体作平动时,可用其形心的运动来代替刚体的运动,可以归结为点的运动研究。第11页,共18页。二、刚体的定轴转动 刚体定轴转动时,体内或其延拓部分始终有一条
7、直线保持不动。如右图的z轴。这一直线称为转轴。 (一)运动方程 将一平面固定在地面不动,再选一平面 与转动刚体固联在一起,平面 与刚体共同转动,所以平面 的位置可确定刚体的转动位置。所以平面 与固定平面 的夹角可以确定刚体的位置。刚体转动时转角随时间变化,是时间t的单值连续函数,故可得刚体的转动方程为单位: rad 正负:从z 轴的正向看,沿逆时针转动为正;反之为负。 (二)角速度 转角随时间t的变化率,即角速度。是转角对时间的一阶导数单位 :rad/s 工程上有:第12页,共18页。 (三)角加速度 角速度随时间t的变化率,即角加速度。是角速度对时间的一阶导数,转角对时间的二阶导数正负规定:
8、与角速度方向一致时为正,刚体作加速转动;与角速度方向相反时为负,作减速转动。 (四)刚体内各点的速度与加速度 点M 的运动方程为 任一瞬时,点 M 的速度 v 的大小为 其方向沿轨迹的切线方向,即垂直与半径OM,指向与转向一致。 任一瞬时,点 M 的切向加速度为 其方向沿轨迹的切线方向,指向与转向一致。第13页,共18页。 点 M 的法向加速度为 其方向沿指向圆心。 点 M 的全加速度为 其与OM 的夹角为 第14页,共18页。 例 如图搅拌机的主动轮同时带动齿轮、 转动,搅杆BAC 用销钉A、B与齿轮、 连接。设主动轮的转速 n=950r/min,AB=O2O3,O2A=O3B=25cm,各
9、轮的齿数分别为Z1=20,Z2=Z3=50。 求:搅拌杆上点C 的运动轨迹和速度大小。 解: 根据题意,AB=O2O3,O2A=O3B,说明:AB与O2O3相平行,搅拌杆BAC在工作过程中将始终与其初始位置平行,其运动为平动。因此搅拌杆上点 C 的轨迹和速度应与点 A 的相同。点 A 的轨迹是一半径为25cm的圆。 齿轮上的M1 点和齿轮 上点M2 的速度相等即 由于 所以 由于齿轮在啮合圆上的齿距相等,它们的齿数与半径成正比 根据上式可得 第15页,共18页。 例 圆轮绕定点O转动,并在此轮缘上绕一柔软而不可伸长的绳子,绳子下端悬一物体A。设该轮的半径 R=0.2m,其转动方程为 , 角的单
10、位为rad,时间t的单位为s。 求:当 t =1s时,轮缘上任一点M 的速度和加速度及物体A的速度和加速度。 解:由转动方程可求圆轮在任一瞬时的角速度和角加速度 当 t =1s时,有 因此,轮缘上任一点M的速度和加速度为第16页,共18页。 M 点的全加速度及其偏角为 A点的速度和加速度分别和轮缘上点M点的速度和加速度相等,即 回目录第17页,共18页。第四节 问题讨论与说明一、与物理学中运动学的比较 在物理学中已有的一些特殊运动形式的基础上,建立全面、系统和比较深入的点和刚体模型的运动形式。 二、建立点的运动方程与研究点的运动几何性质 建立点的运动方程与研究点的运动几何性质,二者之间既有密切
11、联系,又有一定的区别。 点的运动方程完全包括了点的运动几何性质。但是如果有了运动方程,不作物理上的分析,那还只停留在数学公式上,仍不能真正的了解点的运动形象。因此,所谓“点的运动分析”,包含了这两方面内容。另外,研究点的运动形象,也可以采用其它方法而不必建立运动方程。 研究点的运动几何性质的方法:在点的运动轨迹上,画出并分析几个特定瞬时位置的v、a关系。用离散的二者关系,表达连续的运动过程。 三、描述点运动方法的比较 矢径法用变矢量及其导数描述点的运动,所得结果紧凑、简明,理论上具有概括性,切与坐标系的选择无关;在分析实际力学问题时,需将变矢量及其导数转换为标量及其导数形式。直角坐标法是一种广泛应用的方法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年加长型下颌520A下颌植入体项目投资价值分析报告
- 2024年有机硅乳液消泡剂项目可行性研究报告
- 2024年中国片状复合铅市场调查研究报告
- 校文明标兵评比方案
- 2023年旋涡式鼓风机项目成效分析报告
- 2023年房屋和土木工程产品项目评价分析报告
- 建筑砖块采购合同样本
- 全年销售代理合同书格式
- 陶瓷原料采购合同范本
- 政府委托采购合同签订程序详解
- 政治审查表(模板)
- 2024届高考英语复习语法填空课件
- 监控设备保养维护方案
- 公立医院绩效考核表
- 华电人才测评试题在线测试
- 《带压堵漏技术》课件
- 铜矿矿山规划与布局
- 备考2023高考语文二轮 高中语文 山水田园类诗歌阅读专项练习(解析)
- 人教版二年级上册口算练习1000题及答案
- 2024年浙江建银工程咨询有限责任公司招聘笔试参考题库含答案解析
- 平台分销返佣合作协议
评论
0/150
提交评论