




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课时分层训练(三十四)简单线性规划A组根底达标(建议用时:30分钟)一、选择题1.点(3, 1)和点(4, 6)在直线3x 2y a = 0的两侧,那么a的取值 范围为()A. (-24,7)B. (-7,24)C. ( 8, - 7)U(24, +8) d. ( oo, 24)U(7, +)B 根据题意知(9 + 2a) (12+12 a)0,即(a+ 7)(a-24)0,解得一7a0, TOC o 1-5 h z 2.不等式组x+3y4,所表示的平面区域的面积等于()3x+ y 4A.|B- 3C.3D. 4C 平面区域如图中阴影局部所示.x+ 3y=4,解得 A(1,1),3x+y =
2、44易得 B(0,4), C 0, 3 ,BC| = 4-4=8,S*ABC,X.X 1 .3 32 332x y0 0,(2021北京高考)假设x, y满足x + y0,()03C. 4D. 5C 根据题意作出可行域如图阴影局部所示,平移直线 v= 2x,当直线平2x y = 0,移到虚线处时,目标函数取得最大值,由可得A(1,2),此时2x + yx+y=3,取最大值为2X 1 + 2 = 4.xy-2, 的解集记为D ,假设x- 2y 2 TOC o 1-5 h z (a, b) C D,那么z=2a 3b的最大值是()A. 1B. 4C. -1D. -4A 由题意得a , b满足约束条
3、件a-b 2,以a为横轴,b为纵轴建立平面直角a 2b一2,坐标系,那么不等式组表示的平面区域为以(一2,0), (-1, 1), (2,2)为顶点的三角形区域(包含边界),由图易得当目标函数 z= 2a 3b经过平面区域内的点(1, 1)时,z=2a3b 取得最大值 zmax= 2X(1)3X(1)=1,应选 A.x y0,. x, y满足约束条件 x+y0,B. 2()A. 3C. -2D. -3B 画出不等式组表示的平面区域如图中阴影局部所 示,假设z= ax+ y的最大值为4,那么最优解为x=1, y= 1或x=2, y= 0,经检验知x=2, y=0符合题意,;2a+ 0= 4,止匕
4、时a = 2,应选B.二、填空题x 1,那么目标函数z= 3xy的.设变量x, y满足约束条件 x+ y- 4 0,x- 3y+40,7. (2021江苏高考)实数x, y满足2x + y-20,那么x2 + y2的取值范3x-y-3 0,. (2021郑州第二次质量预测)实数x, y满足x-y0, 设b = x2y,0 xa,假设b的最小值为一2,那么b的最大值为.【导学号:57962292!1 b,10 回出可行域,如图阴影局部所小.由b=x 2y,彳4 y=2x 2.易知在点 (a, a)处b取最小值,故a 2a= 2,可得a=2.在点(2, 4)处b取最大值,于是b的最大值为2+8=1
5、0.解答题.假设直线x+my+ m=0与以P(1, 1), Q(2,3)为端点的线段不相交, 求m的取值范围.【导学号:57962293】解直线x+my+ m=0将坐标平面划分成两块区域,线段 PQ与直线x+my+ m=0不相交,5分1 m+ m0,2+3m+m0,那么点P, Q在同一区域内,于是2 + 3m+ m0,一 ,一1所以m的取值范围是m1,.假设x, y满足约束条件 x-y-1, 2x y0 2. 11, 一一求目标函数z= 2x y+ 2的取值;假设目标函数z= ax+2y仅在点(1,0)处取得最小值,求a的取值范围.解(1)作出可行域如图,可求得 A(3,4), B(0,1),
6、 C(1,0).2分平移初始直线2x-y+2 = 0,过A(3,4)取最小值2,过C(1,0)取最大值1,所以z的最大值为1,最小值为2.a直线ax+2y= z仅在点(1,0)处取得最小值,由图象可知1-2,解得 40,表示的平面区域为三角x y+ 2m0413A. 3B. 1D. 3B 作出可行域,如图中阴影局部所示,易求 A, B, C, D的坐标分别为A(2,0), B(1-m,1 + m), C tm, 2-m , D(-2m,0).33_1 _1Sbc = Sxadb- S1aadc =2 |AD| yB -yc| =2(2+ 2m) 1 + mm) 1 + m-解得 m= 1 或
7、m= 3(舍去).33那么y的最大x-10,. (2021全国卷I)假设x, y满足约束条件 x-y0,x + y 4 0 0,画出可行域如图阴影所示,:y表示过点(x, y)与原点(0,0)的直线的斜率, x.二点(x, y)在点A处时y最大. xx= 1,x+ y 4=0,x=1, y= 3,A(1,3).y的最大值为3. x3.某玩具生产公司每天方案生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,总生 产时间不超过10小时.假设生产一个卫兵可获利润 5元,生产一个骑兵可获利 润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润状元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?【导学号:57962294】解(1)依题意每天生产的伞兵个数为100 x-y,所以利润 =5x+6y+3(100 x y) = 2x+3y+ 300.(2)约束条件为5x+ 7y+4 100-x-y 0,x 0, y 0, x, y C N ,x+ 3y200,整理得x+ y0, y0, x, y C N.目标函数为=2x+ 3y+300,作出可行域,如下图,作初始直线I。: 2x+ 3y=0,平移10,当1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 亳州职业技术学院《工程统计》2023-2024学年第二学期期末试卷
- 河北地质大学华信学院《机械工程测试技术基础实验》2023-2024学年第二学期期末试卷
- 广东茂名农林科技职业学院《创新思维与设计》2023-2024学年第二学期期末试卷
- 兰州城市学院《组织设计》2023-2024学年第二学期期末试卷
- 湖北生态工程职业技术学院《土木工程制图》2023-2024学年第二学期期末试卷
- 西安工商学院《逆向设计与增材制造》2023-2024学年第二学期期末试卷
- 天府新区航空旅游职业学院《物流客户关系管理》2023-2024学年第二学期期末试卷
- 2025四年级数学下学期期中学业质量监测复习
- 新年底个人工作计划
- 2025年三年级语文下学期期中复习同步练习题单
- 部编版小学五年级下册《道德与法治》全册教案含教学计划
- 运动会活动流程中的医疗安全保障措施
- 2025公司员工试用期合同(范本)
- 第十章皮肤软组织扩张术医学美容教研室袁晓野讲解
- 2025年冷链物流产品配送及仓储管理承包合同3篇
- 2024年青岛远洋船员职业学院高职单招语文历年参考题库含答案解析
- 2024-2025学年成都高新区七上数学期末考试试卷【含答案】
- 浙教版2023小学信息技术六年级上册《人机对话的实现》说课稿及反思
- 2025年山东出版集团有限公司招聘笔试参考题库含答案解析
- 【开题报告】中小学校铸牢中华民族共同体意识教育研究
- GB/T 19342-2024手动牙刷一般要求和检测方法
评论
0/150
提交评论