




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计量经济学实验报告 班级:2012级金融6班 姓名:赵勇志 学号:20125392实验一实验目的:掌握一元线性回归模型的估计方法。实验要求:选择方程进行一元线性回归。实验原理:普通最小二乘法(OLS)实验数据:东莞市经济部分数据、广东省宏观经济部分数据。 实验结果:1、REV作为应变量,把GDP作为解释变量Dependent Variable: REVMethod: Least SquaresDate: 06/08/14 Time: 14:06Sample: 1978 1995Included observations: 18VariableCoefficientStd. Errort-Sta
2、tisticProb. GDP0.0847810.00331125.604530.0000C-5826.1582517.475-2.3142860.0343R-squared0.976176 Mean dependent var38637.72Adjusted R-squared0.974687 S.D. dependent var48603.38S.E. of regression7732.823 Akaike info criterion20.84877Sum squared resid9.57E+08 Schwarz criterion20.94771Log likelihood-185
3、.6390 F-statistic655.5922Durbin-Watson stat0.335513 Prob(F-statistic)0.000000得到了估计方程:REV = 0.08478103497*GDP - 5826.1578622、把EXB作为应变量,把REV作为解释变量Dependent Variable: EXBMethod: Least SquaresDate: 06/08/14 Time: 14:09Sample: 1978 1995Included observations: 18VariableCoefficientStd. Errort-StatisticProb
4、. REV0.7193080.01115364.497070.0000C-2457.310680.5738-3.6106440.0023R-squared0.996168 Mean dependent var25335.11Adjusted R-squared0.995929 S.D. dependent var35027.97S.E. of regression2234.939 Akaike info criterion18.36626Sum squared resid79919268 Schwarz criterion18.46519Log likelihood-163.2963 F-st
5、atistic4159.872Durbin-Watson stat2.181183 Prob(F-statistic)0.000000得到了估计方程:EXB = 0.719308*REV - 2457.301把SLC作为应变量,把GDP作为解释变量Dependent Variable: SLCMethod: Least SquaresDate: 06/08/14 Time: 14:14Sample: 1978 1995Included observations: 18VariableCoefficientStd. Errort-StatisticProb. GDP0.4318270.00404
6、6106.72670.0000C-2411.3613076.237-0.7838670.4446R-squared0.998597 Mean dependent var224062.6Adjusted R-squared0.998510 S.D. dependent var244763.3S.E. of regression9449.149 Akaike info criterion21.24968Sum squared resid1.43E+09 Schwarz criterion21.34861Log likelihood-189.2471 F-statistic11390.59Durbi
7、n-Watson stat1.715091 Prob(F-statistic)0.000000得到了估计方程:SLC = 0.4318268605*GDP - 2411.36095LB作为应变量,GDP1作为解释变量Dependent Variable: LBMethod: Least SquaresDate: 06/08/14 Time: 14:19Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.4965380.00527794.102520.0000C
8、57.1378922.175202.5766570.0176R-squared0.997634 Mean dependent var1486.166Adjusted R-squared0.997521 S.D. dependent var1556.667S.E. of regression77.49819 Akaike info criterion11.62133Sum squared resid126125.4 Schwarz criterion11.72007Log likelihood-131.6453 F-statistic8855.284Durbin-Watson stat1.781
9、264 Prob(F-statistic)0.000000得到了估计方程:LB = 0.4965380887*GDP1 + 57.13788724ZJ作为应变量,GDP1作为解释变量Dependent Variable: ZJMethod: Least SquaresDate: 06/08/14 Time: 14:23Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1654060.00294056.260930.0000C-42.9895112.35547
10、-3.4793900.0022R-squared0.993409 Mean dependent var433.0448Adjusted R-squared0.993095 S.D. dependent var519.6546S.E. of regression43.18007 Akaike info criterion10.45158Sum squared resid39154.89 Schwarz criterion10.55032Log likelihood-118.1931 F-statistic3165.292Durbin-Watson stat0.405988 Prob(F-stat
11、istic)0.000000 得到了估计方程:ZJ = 0.1654055246*GDP1 - 42.9895126SE作为应变量,GDP1作为解释变量Dependent Variable: SEMethod: Least SquaresDate: 06/08/14 Time: 14:29Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1664470.00345948.124650.0000C-36.6064514.53536-2.5184410.0200
12、R-squared0.991014 Mean dependent var442.4265Adjusted R-squared0.990586 S.D. dependent var523.5596S.E. of regression50.79837 Akaike info criterion10.77655Sum squared resid54189.96 Schwarz criterion10.87529Log likelihood-121.9303 F-statistic2315.982Durbin-Watson stat0.633700 Prob(F-statistic)0.000000得
13、到了估计方程:SE = 0.1664474631*GDP1 - 36.60645462YY作为应变量,GDP1作为解释变量Dependent Variable: YYMethod: Least SquaresDate: 06/08/14 Time: 14:31Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1716080.00616127.855130.0000C22.4615625.891060.8675410.3955R-squared0.973648
14、 Mean dependent var516.3478Adjusted R-squared0.972393 S.D. dependent var544.5861S.E. of regression90.48441 Akaike info criterion11.93117Sum squared resid171936.0 Schwarz criterion12.02991Log likelihood-135.2085 F-statistic775.9083Durbin-Watson stat1.099129 Prob(F-statistic)0.000000由于常数项没有通过检验,所以去掉常数
15、项重新检验。Dependent Variable: YYMethod: Least SquaresDate: 06/08/14 Time: 14:38Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1752690.00446439.261420.0000R-squared0.972704 Mean dependent var516.3478Adjusted R-squared0.972704 S.D. dependent var544.5861S.E. o
16、f regression89.97426 Akaike info criterion11.87943Sum squared resid178098.1 Schwarz criterion11.92880Log likelihood-135.6134 Durbin-Watson stat1.058314 得到了估计方程:YY = 0.1752685914*GDP1CS作为应变量,SE作为解释变量Dependent Variable: CSMethod: Least SquaresDate: 06/08/14 Time: 14:43Sample: 1978 2000Included observa
17、tions: 23VariableCoefficientStd. Errort-StatisticProb. SE0.4905460.01350936.311580.0000C29.031219.1419293.1756120.0046R-squared0.984323 Mean dependent var246.0617Adjusted R-squared0.983576 S.D. dependent var258.8672S.E. of regression33.17508 Akaike info criterion9.924416Sum squared resid23112.31 Sch
18、warz criterion10.02316Log likelihood-112.1308 F-statistic1318.531Durbin-Watson stat1.281007 Prob(F-statistic)0.000000 得到了估计方程:CS = 0.4905459191*SE + 29.03121437CZ作为应变量,CS作为解释变量Dependent Variable: CZMethod: Least SquaresDate: 06/08/14 Time: 14:49Sample: 1978 2000Included observations: 23VariableCoeff
19、icientStd. Errort-StatisticProb. CS1.2620160.02737746.098370.0000C-20.247229.665329-2.0948300.0485R-squared0.990215 Mean dependent var290.2865Adjusted R-squared0.989749 S.D. dependent var328.3047S.E. of regression33.24050 Akaike info criterion9.928356Sum squared resid23203.55 Schwarz criterion10.027
20、09Log likelihood-112.1761 F-statistic2125.060Durbin-Watson stat1.475902 Prob(F-statistic)0.000000得到了估计方程:CZ = 1.26201555*CS - 20.24721934实验二实验目的:掌握一元线性回归模型的检验方法。实验要求:进行经济、拟合优度、参数显著性和方程显著性等检验。实验原理:拟合优度的判定系数R2 检验和参数显著性t检验等。实验结果:1.把REV作为应变量,把GDP作为解释变量REV = 0.08478103497*GDP - 5826.157862 (0.003311) (25
21、17.475) (25.60453) (-2.314286)R2= 0.976176 SE = 7732.823REV对GDP的回归系数为 0.08478103497,R2= 0.976176 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量GDP在95%的置信度下显著,即通过变量显著性检验。2.把EXB作为应变量,把REV作为解释变量EXB = 0.7193079524*REV - 2457.309747 (0.011153) (0.011153) (64.49707) ( -3.610644)R2 = 0.996168 SE = 2234.939EXB对R
22、EV的回归系数为 0.7193079524,R2= 0.996168 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量REV在95%的置信度下显著,即通过变量显著性检验。3.把SLC作为应变量,把GDP作为解释变量SLC = 0.4318268605*GDP - 2411.36095(0.004046) (3076.237)(106.7267) (-0.783867)R2= 0.998597 SE= 9449.149SLC对GDP的回归系数为0.4318268605 ,R2= 0.998597 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16
23、),说明解释变量GDP在95%的置信度下显著,即通过变量显著性检验。4.把LB作为应变量,GDP1作为解释变量LB = 0.4965380887*GDP1 + 57.13788724(0.005277) (22.17520)(94.10252) (2.576657)R2=0.997634 SE= 77.49819LB对GDP1的回归系数为0.4965380887 ,R2= 0.997634 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量GDP1在95%的置信度下显著,即通过变量显著性检验。5.把ZJ作为应变量,GDP1作为解释变量ZJ = 0.1654055
24、246*GDP1 - 42.9895126(0.002940) (12.35547)(56.26093) (-3.479390)R2= 0.993409 SE = 43.18007ZJ对GDP1的回归系数为 0.1654055246,R2=0.993409 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量GDP1在95%的置信度下显著,即通过变量显著性检验。6.把SE作为应变量,GDP1作为解释变量SE = 0.1664474631*GDP1 - 36.60645462(0.003459) (14.53536)(48.12465) (-2.518441)R2=
25、 0.991014 SE = 50.79837SE对GDP1的回归系数为 0.1664474631,R2= 0.991014,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量GDP1在95%的置信度下显著,即通过变量显著性检验。7.把YY作为应变量,GDP1作为解释变量YY = 0.1752685914*GDP1 (0.004464) (39.26142) R2= 0.972704 SE = 89.97426YY对GDP1的回归系数为0.1752685914 ,R2= 0.972704 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解
26、释变量GDP1在95%的置信度下显著,即通过变量显著性检验。8. CS作为应变量,SE作为解释变量 CS = 0.4905459191*SE + 29.03121437(0.013509) (9.141929) (36.31158) (3.175612)R2= 0.984323 SE = 33.17508CS对SE的回归系数为0.4905459191 ,R2= 0.984323 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量SE在95%的置信度下显著,即通过变量显著性检验。9.CZ作为应变量,CS作为解释变量 CZ = 1.26201555*CS - 20.
27、24721934 (0.027377) (9.665329)(46.09837) (-2.094830)R2= 0.990215 SE = 33.24050CZ对CS的回归系数为 1.26201555,R2= 0.990215 ,接近1,因此拟合优度好。t(16)=2.12,l t lt(16),说明解释变量CS在95%的置信度下显著,即通过变量显著性检验。实验三 实验目的:掌握多元线性回归模型的估计和检验方法。实验要求:选择方程进行多元线性回归。实验原理:普通最小二乘法(OLS)。实验结果:根据东莞数据选择第二产业增加值(GDP2)、固定资产净值(NKF2)和劳动者人数(LT2)的数据,把G
28、DP2作为应变量,NKF2和LT2作为两个解释变量进行二元线性回归分析。 1、 作GDP2与NKF2、GDP2与LT2的散点图Scat GDP2 NKF2Scat GDP2 LT2Dependent Variable: GDP2Method: Least SquaresDate: 06/15/14 Time: 14:12Sample: 1978 1995Included observations: 18VariableCoefficientStd. Errort-StatisticProb. NKF20.6982960.02151232.461030.0000C55714.2411197.58
29、4.9755620.0001R-squared0.985043 Mean dependent var264711.6Adjusted R-squared0.984108 S.D. dependent var308327.3S.E. of regression38868.85 Akaike info criterion24.07821Sum squared resid2.42E+10 Schwarz criterion24.17714Log likelihood-214.7039 F-statistic1053.718Durbin-Watson stat1.306346 Prob(F-stati
30、stic)0.000000得到了估计方程:GDP2 = 0.6982962506*NKF2 + 55714.24213Dependent Variable: GDP2Method: Least SquaresDate: 06/15/14 Time: 14:18Sample: 1978 1995Included observations: 18VariableCoefficientStd. Errort-StatisticProb. LT22.7109800.4400036.1612740.0000C-431249.1120096.7-3.5908500.0024R-squared0.70349
31、1 Mean dependent var264711.6Adjusted R-squared0.684959 S.D. dependent var308327.3S.E. of regression173059.4 Akaike info criterion27.06510Sum squared resid4.79E+11 Schwarz criterion27.16403Log likelihood-241.5859 F-statistic37.96130Durbin-Watson stat0.325257 Prob(F-statistic)0.000014得到了估计方程:GDP2 = 2.
32、71097983*LT2 - 431249.0779作GDP2与 NKF2和LT2的二元回归Dependent Variable: GDP2Method: Least SquaresDate: 06/15/14 Time: 14:23Sample: 1978 1995Included observations: 18VariableCoefficientStd. Errort-StatisticProb. NKF20.6293780.02971521.180110.0000LT20.3953140.1365112.8958380.0111C-25143.3329418.08-0.8546900
33、.4062R-squared0.990406 Mean dependent var264711.6Adjusted R-squared0.989127 S.D. dependent var308327.3S.E. of regression32150.29 Akaike info criterion23.74524Sum squared resid1.55E+10 Schwarz criterion23.89364Log likelihood-210.7072 F-statistic774.2594Durbin-Watson stat1.983844 Prob(F-statistic)0.00
34、0000得到了估计方程:GDP2 = 0.6293775361*NKF2 + 0.3953138872*LT2 - 25143.332112、作LB与GDP1的一元回归Dependent Variable: LBMethod: Least SquaresDate: 06/15/14 Time: 14:32Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.5058490.004310117.37030.0000R-squared0.996886 Mean de
35、pendent var1486.166Adjusted R-squared0.996886 S.D. dependent var1556.667S.E. of regression86.86456 Akaike info criterion11.80908Sum squared resid165999.9 Schwarz criterion11.85845Log likelihood-134.8044 Durbin-Watson stat1.395510作LB与 GDP1、T的二元回归;Dependent Variable: LBMethod: Least SquaresDate: 06/15
36、/14 Time: 14:39Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.4787580.00937651.063660.0000T9.0105162.8737003.1355110.0050R-squared0.997879 Mean dependent var1486.166Adjusted R-squared0.997778 S.D. dependent var1556.667S.E. of regression73.37653 Akaike i
37、nfo criterion11.51203Sum squared resid113066.4 Schwarz criterion11.61077Log likelihood-130.3883 Durbin-Watson stat1.917391估计方程的判定系数R2 分别接近1,参数显著性t检验值均大于2,方程显著性F检验显著。调整的判定系数为0.997778 ,比一元回归有明显改善。所以,得到了估计方程:LB = 0.4787579113*GDP1 + 9.010515807*TZJ与 GDP1的一元回归Dependent Variable: ZJMethod: Least SquaresD
38、ate: 06/15/14 Time: 14:43Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1584000.00262860.271220.0000R-squared0.989610 Mean dependent var433.0448Adjusted R-squared0.989610 S.D. dependent var519.6546S.E. of regression52.96956 Akaike info criterion10.81982
39、Sum squared resid61727.04 Schwarz criterion10.86919Log likelihood-123.4279 Durbin-Watson stat0.278503作ZJ与 GDP1、T的二元回归;Dependent Variable: ZJMethod: Least SquaresDate: 06/15/14 Time: 14:53Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1811640.00435141.63
40、5220.0000T-7.5713031.333671-5.6770410.0000R-squared0.995901 Mean dependent var433.0448Adjusted R-squared0.995706 S.D. dependent var519.6546S.E. of regression34.05371 Akaike info criterion9.976696Sum squared resid24352.76 Schwarz criterion10.07543Log likelihood-112.7320 Durbin-Watson stat0.637365估计方程
41、的判定系数R2 分别接近1,参数显著性t检验值均大于2,方程显著性F检验显著。调整的判定系数为0.995706 ,比一元回归有明显改善。所以,得到了估计方程:ZJ = 0.1811640816*GDP1 - 7.571303452*T作SE与GDP1的一元回归Dependent Variable: SEMethod: Least SquaresDate: 06/15/14 Time: 14:57Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1604820
42、.00281057.114940.0000R-squared0.988300 Mean dependent var442.4265Adjusted R-squared0.988300 S.D. dependent var523.5596S.E. of regression56.63148 Akaike info criterion10.95351Sum squared resid70556.74 Schwarz criterion11.00288Log likelihood-124.9654 Durbin-Watson stat0.523106作SE 与 GDP1、T的二元回归;Depende
43、nt Variable: SEMethod: Least SquaresDate: 06/15/14 Time: 15:01Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1806280.00566531.882960.0000T-6.7006471.736460-3.8587970.0009R-squared0.993154 Mean dependent var442.4265Adjusted R-squared0.992828 S.D. depende
44、nt var523.5596S.E. of regression44.33846 Akaike info criterion10.50452Sum squared resid41283.89 Schwarz criterion10.60326Log likelihood-118.8020 Durbin-Watson stat0.763060估计方程的判定系数R2 分别接近1,参数显著性t检验值均大于2,方程显著性F检验显著。调整的判定系数为0.992828 ,比一元回归有明显改善。所以,得到了估计方程:SE = 0.1806284457*GDP1 - 6.70064709*T作YY与 GDP1
45、的一元回归Dependent Variable: YYMethod: Least SquaresDate: 06/15/14 Time: 15:15Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. GDP10.1752690.00446439.261420.0000R-squared0.972704 Mean dependent var516.3478Adjusted R-squared0.972704 S.D. dependent var544.5861S.E. of
46、 regression89.97426 Akaike info criterion11.87943Sum squared resid178098.1 Schwarz criterion11.92880Log likelihood-135.6134 Durbin-Watson stat1.058314作YY与 GDP1、T的二元回归Dependent Variable: YYMethod: Least SquaresDate: 06/15/14 Time: 15:25Sample: 1978 2000Included observations: 23VariableCoefficientStd.
47、 Errort-StatisticProb. GDP10.1594490.01115514.294190.0000T5.2618073.4189951.5389920.1387R-squared0.975470 Mean dependent var516.3478Adjusted R-squared0.974302 S.D. dependent var544.5861S.E. of regression87.29999 Akaike info criterion11.85952Sum squared resid160047.1 Schwarz criterion11.95826Log like
48、lihood-134.3845 Durbin-Watson stat1.198126估计方程的判定系数R2 分别接近1,参数t检验GDP1显著,方程显著性F检验显著。调整的判定系数为0.974302 ,比一元回归有明显改善。所以,得到了估计方程:YY = 0.1594485548*GDP1 + 5.261806944*T实验四第一部分 异方差模型的检验实验目的:掌握异方差模型的检验方法。实验要求:掌握图形法检验和Glejser检验。实验原理:图形法检验、Glejser检验。实验结果:1、ZJ对GDP1和T回归的残差趋势图和残差散点图。genr e2=resid2从图上看ZJ对GDP1和T回归的
49、残差存在异方差。2、做对ZJ和GDP1回归的Glejser检验。genr E1=residls abs(e1) c gdp1ls abs(e1) c gdp12ls abs(e1) c SQR(gdp1)ls abs(e1) c 1/gdp1以上四个对gdp1回归得结果分别为:对gdp1Dependent Variable: ABS(E1)Method: Least SquaresDate: 06/16/14 Time: 17:21Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-Statistic
50、Prob. C20.718966.0638983.4167730.0026GDP10.0043870.0014433.0403050.0062R-squared0.305635 Mean dependent var33.34424Adjusted R-squared0.272570 S.D. dependent var24.84736S.E. of regression21.19219 Akaike info criterion9.028084Sum squared resid9431.287 Schwarz criterion9.126822Log likelihood-101.8230 F
51、-statistic9.243454Durbin-Watson stat1.148496 Prob(F-statistic)0.006221对gdp1 2回归得结果为:Dependent Variable: ABS(E1)Method: Least SquaresDate: 06/16/14 Time: 17:24Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C24.836605.3297584.6599850.0001GDP124.82E-071.64E-072.
52、9285480.0080R-squared0.289974 Mean dependent var33.34424Adjusted R-squared0.256164 S.D. dependent var24.84736S.E. of regression21.42984 Akaike info criterion9.050387Sum squared resid9643.999 Schwarz criterion9.149126Log likelihood-102.0795 F-statistic8.576393Durbin-Watson stat1.132628 Prob(F-statist
53、ic)0.008028从F检验来为来看整个模型不显著(3)对SQR(gdp1)回归得结果为:Dependent Variable: ABS(E1)Method: Least SquaresDate: 06/16/14 Time: 17:29Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C12.165158.5006121.4310910.1671SQR(GDP1)0.4640730.1584552.9287360.0080R-squared0.290001 Mean
54、 dependent var33.34424Adjusted R-squared0.256191 S.D. dependent var24.84736S.E. of regression21.42944 Akaike info criterion9.050350Sum squared resid9643.639 Schwarz criterion9.149088Log likelihood-102.0790 F-statistic8.577497Durbin-Watson stat1.118705 Prob(F-statistic)0.008024常数项不显著,去掉常数项再进行回归得结果为:D
55、ependent Variable: ABS(E1)Method: Least SquaresDate: 06/16/14 Time: 17:31Sample: 1978 2000Included observations: 23VariableCoefficientStd. Errort-StatisticProb. SQR(GDP1)0.6569810.0852537.7062760.0000R-squared0.220758 Mean dependent var33.34424Adjusted R-squared0.220758 S.D. dependent var24.84736S.E
56、. of regression21.93392 Akaike info criterion9.056451Sum squared resid10584.13 Schwarz criterion9.105820Log likelihood-103.1492 Durbin-Watson stat1.019181(4)对 1/gdp1回归得结果为:Dependent Variable: ABS(E1)Method: Least SquaresDate: 06/16/14 Time: 17:36Sample: 1978 2000Included observations: 23VariableCoef
57、ficientStd. Errort-StatisticProb. C39.308827.0213465.5984740.00001/GDP1-3994.3633218.612-1.2410200.2283R-squared0.068328 Mean dependent var33.34424Adjusted R-squared0.023963 S.D. dependent var24.84736S.E. of regression24.54784 Akaike info criterion9.322066Sum squared resid12654.53 Schwarz criterion9
58、.420805Log likelihood-105.2038 F-statistic1.540131Durbin-Watson stat0.869730 Prob(F-statistic)0.228283从F检验来为来看整个模型不显著 从四个回归的结果看,回归(4)不显著,(1)、(2)、(3)显著,比较(1)(3)不带常数项的回归,选择(3),方程为:ABS(E1) = 0.6569810506*SQR(GDP1)即异方差的形式为:2=( 0.6569810506*SQR(GDP1)2=0.4316241008*也即异方差的形式为:2=2*第二部分 异方差模型的处理实验目的:掌握异方差模型的
59、处理方法。实验要求:理解同方差性变换,掌握加权最小二乘法(WLS)。实验原理:加权最小二乘法(WLS)、同方差性变换和广义最小二乘法(GLS)。实验结果: 1、 已知ZJ对GDP1和T回归异方差的形式为: 把作为权数来进行加权最小二乘法。得到回归结果为:Dependent Variable: ZJMethod: Least SquaresDate: 06/22/14 Time: 14:28Sample: 1978 2000Included observations: 23Weighting series: 1/(GDP1)1/6VariableCoefficientStd. Errort-St
60、atisticProb. GDP10.1589580.00464634.210210.0000T-3.4691890.487355-7.1183960.0000Weighted StatisticsR-squared0.706997 Mean dependent var87.15467Adjusted R-squared0.693044 S.D. dependent var13.22542S.E. of regression7.327359 Akaike info criterion6.904049Sum squared resid1127.494 Schwarz criterion7.002
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据驱动的精准广告投放策略
- 2024年宠物殡葬师考试注意事项试题及答案
- 2024年度山东省三支一扶之三支一扶行测题库附答案(基础题)
- 2024年度山东省三支一扶之公共基础知识通关提分题库(考点梳理)
- 计算机二级考试全景式试题及答案2024年
- 探索2024年图书管理员考试的工具与技巧及试题及答案
- 解析图书管理:2024年考试试题及答案
- 2024年消防考试决胜法宝试题及答案
- 2024年宠物殭葬师题库汇编试题及答案
- 地理学的研究方法与思路试题及答案
- 《工程勘察设计收费标准》(2002年修订本)
- 部编人教版语文八年级下册文言文课下注释
- 食品化学 碳水化合物课件
- 在建项目汛前安全生产检查表
- 中国风传统文化家风家训主题PPT模板
- 华为终端合作手机硬件测试标准-V10.4发布版本
- 外科手术基本器械及其使用
- 植被砼护坡绿化施工组织设计
- GPON组网与华为MA5800-X15OLT配置
- 小学四年级综合实践活动课件.ppt
- 通用请假条Excel表格模板
评论
0/150
提交评论