新高考数学二轮专题《圆锥曲线》第14讲 极点极线问题(原卷版)_第1页
新高考数学二轮专题《圆锥曲线》第14讲 极点极线问题(原卷版)_第2页
新高考数学二轮专题《圆锥曲线》第14讲 极点极线问题(原卷版)_第3页
新高考数学二轮专题《圆锥曲线》第14讲 极点极线问题(原卷版)_第4页
新高考数学二轮专题《圆锥曲线》第14讲 极点极线问题(原卷版)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第14讲 极点极线问题一、解答题 1已知椭圆M:(ab0)过A(2,0),B(0,1)两点(1)求椭圆M的离心率;(2)设椭圆M的右顶点为C,点P在椭圆M上(P不与椭圆M的顶点重合),直线AB与直线CP交于点Q,直线BP交x轴于点S,求证:直线SQ过定点2若双曲线与椭圆共顶点,且它们的离心率之积为(1)求椭圆C的标准方程;(2)若椭圆C的左、右顶点分别为,直线l与椭圆C交于P、Q两点,设直线与的斜率分别为,且试问,直线l是否过定点?若是,求出定点的坐标;若不是,请说明理由3如图,椭圆E:的离心率是,过点P(0,1)的动直线与椭圆相交于A,B两点,当直线平行与轴时,直线被椭圆E截得的线段长为.(

2、1)求椭圆E的方程;(2)在平面直角坐标系中,是否存在与点P不同的定点Q,使得恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.4在平面直角坐标系中,如图所示,已知椭圆的左、右顶点分别为,右焦点为.设过点的直线,与此椭圆分别交于点,其中,()设动点满足:,求点的轨迹;()设,求点的坐标;()设,求证:直线必过轴上的一定点(其坐标与无关),并求出该定点的坐标5已知A、B分别为椭圆E:(a1)的左、右顶点,G为E的上顶点,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D(1)求E的方程;(2)证明:直线CD过定点.6已知椭圆:的左焦点为,且过点.(1)求椭圆的标准方程;(

3、2)已知,分别为椭圆的左、右顶点,为直线上任意一点,直线,分别交椭圆于不同的两点,.求证:直线恒过定点,并求出定点坐标.7设椭圆过点,且左焦点为(1)求椭圆的方程;(2)当过点的动直线与椭圆相交于两不同点,时,在线段上取点,且满足,证明:点总在某定直线上8设,点的坐标为(1,1),点在抛物线上运动,点满足,经过点与轴垂直的直线交抛物线于点,点满足,求点的轨迹方程9已知椭圆的左右顶点分别为点,且,椭圆离心率为.(1)求椭圆的方程;(2)过椭圆的右焦点,且斜率不为的直线交椭圆于,两点,直线,的交于点,求证:点在直线上.10如图,B,A是椭圆的左、右顶点,P,Q是椭圆C上都不与A,B重合的两点,记直

4、线BQ,AQ,AP的斜率分别是,.(1)求证:;(2)若直线PQ过定点,求证:.11已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.12椭圆的左、右顶点分别为,上顶点为,点,线的倾斜角为.(1)求椭圆的方程;(2)过且斜率存在的动直线与椭圆交于、两点,直线与交于,求证:在定直线上.13已知椭圆的离心率为,且点在椭圆上(1)求椭圆C的标准方程;(2)如图,椭圆C的左、右顶点分别为A,B,点M,N是椭圆上异于A,B的不同两点,直线的斜率为,直线的斜率为,求证:直线过定点14设分别是椭圆的左右顶点,点为椭圆的上顶点

5、.(1)若,求椭圆的方程;(2)设,是椭圆的右焦点,点是椭圆第二象限部分上一点,若线段的中点在轴上,求的面积.(3)设,点是直线上的动点,点和是椭圆上异于左右顶点的两点,且,分别在直线和上,求证:直线恒过一定点.15已知曲线.(1)若曲线C表示双曲线,求的范围;(2)若曲线C是焦点在轴上的椭圆,求的范围;(3)设,曲线C与轴交点为A,B(A在B上方),与曲线C交于不同两点M,N,与BM交于G,求证:A,G,N三点共线.16已知椭圆过点,且椭圆的一个顶点的坐标为过椭圆的右焦点的直线与椭圆交于不同的两点,(,不同于点),直线与直线:交于点连接,过点作的垂线与直线交于点(1)求椭圆的方程,并求点的坐标;(2)求证:,三点共线17已知椭圆的左右顶点分别为A和B,离心率为,且点在椭圆上.(1)求椭圆的方程;(2)过点M(1,0)作一条斜率不为0的直线交椭圆于P,Q两点,连接AP、BQ,直线AP与BQ交于点N,探求点N是否在一条定直线上,若在,求出该直线方程;若不在,请说明理由.18已知椭圆的左、右顶点分别为,为原点.以为对角线的正方形的顶点,在上.(1)求的离心率;(2)当时,过作与轴不重合的直线与交于,两点,直线,的斜率分别为,试判断是否为定值?若是,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论