版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI)将ANSYS和CFD程序耦合起来。即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。ANSYSCD中包含有MpCCI库和一个相关实例。关于该方法的详细信息,参见ANSYSCoupled-FieldAnalysisGuide中的SequentialCouplin2,FSIsolver流固耦合的设置过程非常简单,推荐
2、你使用这种方式3,multi-fieldsolver这是FSIsolver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合的例子length=2width=3height=2/prep7et,1,63et,2,30!选用FLUID30单元,用于流固耦合问题r,1,0.01mp,ex,1,2e11mp,nuxy,1,0.3mp,dens,1,7800mp,dens,2,1000!定义Acoustics材料来描述流体材料-水mp,sonc,2,1400mp,mu,0,!block,length,width,heigh
3、tesize,0.5mshkey,1!type,1mat,1real,1asel,u,loc,y,widthamesh,allalls!type,2mat,2vmesh,allfini/soluantype,2modopt,unsym,10!非对称模态提取方法处理流固耦合问题eqslv,frontmxpand,10,1nsel,s,loc,x,nsel,a,loc,x,lengthnsel,r,loc,yd,all,ux,uy,uz,nsel,s,loc,y,width,d,all,pres,0allsasel,u,loc,y,width,sfa,all,fsi!定义流固耦合界面allssol
4、vfini/post1set,firstplnsol,u,sum,2,1fini再给大家一个实例!考虑结构在水中的自振频率:例子是一加筋板在水中的模态分析命令流如下:FINISH/CLEAR/FILENAME,plane/UNITS,SI/TITLE,plane/PREP7!*ELEMENTDEFINE*ET,63,63ET,4,beam4et,30,fluid30!*MATERIALDEFINE*MP,EX,1,2.10E11MP,DENS,1,7850MP,NUXY,1,0.3mp,dens,30,1025mp,sonc,30,1500mp,mu,30,0.5!*REALCONSTANT*
5、r,30,1e-06r,50,0.05r,75,0.375e-02,0.78125e-06,0.000016406k,1k,4,1kfill,1,4,2,1kgen,4,1,4,1,1/3,10a,1,2,12,11*do,i,0,2*do,j,0,2*10,10a,1+i+j,2+i+j,12+i+j,11+i+j*enddo*enddok,100,-14.5,-14.5k,101,-14.5,15.5k,102,15.5,15.5k,103,15.5,-14.5k,140,-14.5,-14.5,30k,141,-14.5,15.5,30k,142,15.5,15.5,30k,143,15
6、.5,-14.5,30a,100,101,102,103,4,14,24,34,33,32,31,21,11,1a,1,2,3,4,103,100a,140,141,142,143a,100,101,141,140a,101,102,142,141a,142,143,103,102a,140,143,103,100a,14,24,34,33,32,31,21,11,1,2,3,4asel,u,1,FLST,2,8,5,ORDE,2FITEM,2,10FITEM,2,-17VA,P51Xnummrg,allallsMSHKEY,0M
7、SHAPE,0esize,1lsel,s,loc,y,1/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,y,2/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,1/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,2/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,allasel,s,1,9aatt,1,50,63
8、amesh,allallsMSHAPE,1,3desize,3vsel,s,1type,30$mat,30$real,30vmesh,allallsFINISH/solualls!*求解*tTTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxTxANTYPE,MODALMODOPT,lanb,25,0SOLVEFINISH总是出现error说矩阵不对称,不可以用lanb计算。总结:流体单元不能用对称的解法应该采用非对称解法。例子是一圆环在水中的模态分析。命令流如下:finish/clear/PREP7!定义单元类型ET,1,PLANE42!structuralel
9、ementET,2,FLUID29!acousticfluidelementwithux&uyET,3,129!acousticinfinitelineelementr,3,0.31242,0,0ET,4,FLUID29,1,0!acousticfluidelementwithoutux&uy!材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0MP,DENS,2,1030MP,SONC,2,1460!创建四分之一模型CYL4,0,0,0.254,0,0.26035,90CYL4,0,0,0.26035,0,0.31242,90!选择属性,网格划分ASEL
10、,S,AREA,1AATT,1,1,1,0LESIZE,1,16,1LESIZE,3,16,1LESIZE,2,1,1LESIZE,4,1,1MSHKEY,1MSHAPE,0,2D!mappedquadmeshAMESH,1ASEL,S,AREA,2AATT,2,1,2,0LESIZE,5,16,1LESIZE,7,16,1LESIZE,6,5LESIZE,8,5MSHKEY,0MSHAPE,0,2D!mappedquadmeshAMESH,2!关于Y轴镜像nsym,x,1000,all!offsetnodenumberby1000esym,1000,all!关于y轴镜像nsym,y,2000
11、,all!offsetnodenumberby2000esym,2000,allNUMMRG,ALL!mergeallquantitiesesel,s,type,1nsle,sesln,s,0nsle,sesel,invensle,semodif,all,type,4esel,allnsel,all!指定无限吸收边界csys,1nsel,s,loc,x,0.31242type,3real,3mat,2esurfesel,allnsel,all!标识流固交接面nsel,s,loc,x,0.26035esel,s,type,2sf,all,fsi,1nsel,allesel,allFINISH/s
12、oluantype,modalmodopt,damp,10mxpand,10,yessolvefinish为了便于对比,也对圆环在空气中做了模态分析finish/clear/PREP7!定义单元类型ET,1,PLANE42!structuralelement!材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0!创建四分之一模型CYL4,0,0,0.254,0,0.26035,90!选择属性,网格划分ASEL,S,AREA,1AATT,1,1,1,0LESIZE,1,16,1LESIZE,3,16,1LESIZE,2,1,1LESIZE,4,1,1MSHK
13、EY,1MSHAPE,0,2D!mappedquadmeshAMESH,1!关于Y轴镜像nsym,x,1000,all!offsetnodenumberby1000esym,1000,all!关于y轴镜像nsym,y,2000,all!offsetnodenumberby2000esym,2000,allNUMMRG,ALL/soluantype,modalmodopt,lanb,10mxpand,10,yessolvefinish在水中的自振频率为SETTIME/FREQLOADSTEPSUBSTEPCUMULATIVE1-0.19544E-101110.29640E-031113-0.21
14、663E-101224-0.29640E-0312250.30870E-0313360.00001337-0.30870E-0314480.00001449-0.53726E-03155100.57522E-11155110.53726E-0316612-0.89057E-111660.98059E-0117735.2321770.98059E-01188-35.2321880.98061E-0119935.2331990.98061E-0111010-35.23311010在空气中的自振频率为SETTIME/FREQLOADSTEPSUBSTEPCUMULATIVE10.000011120.
15、00001220.73609E-0313360.80514460.805155172.97166172.97177334.40188334.40199546.5911010主要有以下疑问:1)考虑流固耦合,做模态分析时流体单元是否只能用fluid29(2d)和fluid30(3d),对于fluidl29和fluid130在耦合中具体起到什么作用,能不能不设,而用边界约束条件代替?2)流体范围怎样确定,如本例中(CYL4,0,0,0.26035,0,0.31242,90),外半径为0.31242。如果不是环形的,如一块当水板,该怎样考虑?3)如果不考虑流体的压缩性,把声速设的很大,MP,SONC
16、,2,1e20,就可以了。4)从自振频率可以看出,在水中和在空气中,圆环的自振频率差别特别大,且振型也大相径庭,为什么?在水中时,模态提取方法用damp(为什么不能用unsym),特征值的虚部代表角频率,为什么第一阶为正,第二阶为负,而第三阶和第四阶都为0,第六阶、八阶、十阶都为负。应该是从小到大才对?5)在空气中时,模态提取方法用lanb,为什么第一阶第二阶的频率都为0。请高手指点迷津,急盼中对以上问题的解答:频率为零,一般是发生了刚体位移,估计你是把水抽走,而没有限制圆环。1。圆环在水中振动必然导致波动(其实就是声波)在水中传播,当声波到达水的另一个界面时就会发生反射(除非水和另一个相邻体
17、的声阻抗是匹配的)。水和金属中的声速相差不大,即可压缩性相差不大。两种可压缩性相差不大的物质的相互作用对两者影响都很大。圆环在水中振动,水对圆环的反作用是由于反射波引起的,流固耦合中采用fluid129和130就是最大程度的减弱反射波。2。声波从圆环开始传播,随着传播距离的增加,波阵面不断增大,振幅不断减小。同时由于水的衰减,声波也不断减弱。如果水的空间越大,则反射波返回圆环的路径越长,衰减也就越多,影响也就越小。fluid129和130对反射波的衰减(通过很小的反射实现)有限,因此还需要水要有足够的空间。fluidl29和130离结构应该大于0.2U2c/f,c为水中声速)。以上的做法在误差
18、允许的情况下等效于水在无限大水空间中的情况。如果是挡水板,水就是有限空间了,情况也不一样。3。声速加大情况也不一样,就是不知是不是你所要的情况?4。空气作为介质,由于其声速比金属小很多,可压缩性大很多,影响可以忽略不计。而水的影响就不同了。这可能就是频率和振型不同的原因吧?我试了你的例子,各种提取方法都可以。5。空气的影响忽略不计,因此需要对圆环进行约束。你没有约束,那么就会发生静态位移即频率为零。圆环有两个对称轴,因此会发生频率成对出现的情况。也就是说,两个方向上有同样的振型。接触分析实例-包含初始间隙fini/clear,nostart/prep7et,1,82KEYOPT,1,3,3r,
19、1,0.5mp,ex,1,1e9mp,prxy,1,0.3k,1,0,0k,2,10,0k,3,10,5k,4,6.2,5k,5,7.5,3.4k,6,2.5,3.4k,7,3.8,5k,8,0,5a,1,2,3,4,5,6,7,8LFILLT,6,5,0.18,LFILLT,5,4,0.18,FLST,2,3,4FITEM,2,9FITEM,2,11FITEM,2,10AL,P51XFLST,2,3,4FITEM,2,13FITEM,2,14FITEM,2,12AL,P51XFLST,2,3,5,ORDE,2FITEM,2,1FITEM,2,-3AADD,P51Xrect,0,10,4.8,
20、5ASBA,4,1gap=0.02k,24,6.2-gap,5k,25,7.5-gap,3.4k,26,2.5+gap,3.4k,27,3.8+gap,5a,24,25,26,27LFILLT,4,3,0.2,LFILLT,3,2,0.2,FLST,2,3,4FITEM,2,7FITEM,2,10FITEM,2,8AL,P51XFLST,2,3,4FITEM,2,13FITEM,2,14FITEM,2,11AL,P51XFLST,3,2,5,ORDE,2FITEM,3,3FITEM,3,-4ASBA,1,P51Xrect,3.8+gap,6.2-gap,5,10rect,3.8+gap,3.8
21、+gap+8,10,12FLST,2,3,5,ORDE,3FITEM,2,1FITEM,2,3FITEM,2,5AADD,P51Xrect,3.8+gap+8,3.8+gap+8+2,10,12FLST,2,2,5,ORDE,2FITEM,2,1FITEM,2,4AGLUE,P51XCYL4,2.0,1.8,0.6CYL4,7.0,1.8,0.6FLST,2,3,5,ORDE,3FITEM,2,2FITEM,2,4FITEM,2,-5AOVLAP,P51Xesize,0.2amesh,allFLST,5,135,2,ORDE,32FITEM,5,485FITEM,5,576FITEM,5,-5
22、77FITEM,5,621FITEM,5,-625FITEM,5,707FITEM,5,-711FITEM,5,716FITEM,5,741FITEM,5,-745FITEM,5,750FITEM,5,-751FITEM,5,766FITEM,5,797FITEM,5,-798FITEM,5,854FITEM,5,888FITEM,5,-938FITEM,5,1101FITEM,5,1103FITEM,5,1420FITEM,5,1628FITEM,5,1653FITEM,5,1696FITEM,5,1699FITEM,5,-1702FITEM,5,1726FITEM,5,-1728FITEM
23、,5,1852FITEM,5,-1874FITEM,5,2044FITEM,5,-2066CM,_Y,ELEMESEL,P51XCM,_Y1,ELEMCMSEL,S,_YCMDELE,_YEREF,_Y1,1,0,1,1CMDELE,_Y1ET,2,TARGE169ET,3,CONTA172R,3,R,3,0,0,0.1,10,0,0R,4,R,4,0,0,0.1,10,-0.02,0lsel,s,9lsel,a,5lsel,a,12nsll,s,1type,3real,3esurf,allalls,lsel,s,19lsel,a,20nsll,s,1type,3real,4esurf,all
24、alls,lsel,s,7lsel,a,3lsel,a,11nsll,s,1type,2real,3esurf,allalls,lsel,s,25lsel,a,26nsll,s,1type,2real,4esurf,allalls,FLST,2,2,5,ORDE,2FITEM,2,4FITEM,2,-5DA,P51X,ALL,FLST,2,1,4,ORDE,1FITEM,2,6SFL,P51X,PRES,500,/soluantype,0nlgeom,onoutres,all,allnsubst,200,200,2neqit,1000solve耦合小程序最近用到耦合,写了一段小程序,奉献出来,
25、与大家共享。如果有很多节点,每两个节点位置相同,如果将这些杂乱无章的节点耦合,是件很麻烦的事,可用这段程序,轻松解决。cpnum=0cmsel,s,n-zhong!需要耦合的节点*GET,n_num,NODE,COUNT,!节点总数*do,i,1,n_numcmsel,s,n-zhong*GET,n_lowest,NODE,NUM,MIN,!号码最小的节点*GET,n_x,NODE,n_lowest,LOC,X!该节点坐标*GET,n_y,NODE,n_lowest,LOC,Y*GET,n_z,NODE,n_lowest,LOC,ZNSEL,s,LOC,X,n_x-0.3,n_x+0.3!寻找
26、与该节点位置相同的节点NSEL,R,LOC,Y,n_y-0.3,n_y+0.3NSEL,R,LOC,z,n_z-0.3,n_z+0.3cm,n_cp_cp,node!位置相同的节点形成一个组cmsel,s,n-zhongcmsel,u,n_cp_cpcm,n-zhong,node!取消这些点后剩余的点形成组*GET,n_num_1,NODE,COUNT,!节点总数*if,n_num_1,lt,2,exit!如果节点数小于二则退出cmsel,s,n_cp_cp*GET,n_num,NODE,COUNT,*if,n_num,gt,1,thenCP,cpnum+1,ux,allCP,cpnum+2,
27、uy,allCP,cpnum+3,uz,allcpnum=cpnum+3*else*endif*enddo该段程序可用CPINTF,UX,0.001CPINTF,UY,0.001CPINTF,UZ,0.001代替*DO,I,2,296,3CP,I,UX,I,I+2*ENDDO*DO,I,2,296,3CP,I,UY,I,I+2*ENDDO*DO,I,2,296,3CP,I,UZ,I,I+2*ENDDODK,1,0,UX,UY,UZ,以上几句改为:*DO,I,2,296,3CP,NEXT,ALL,I,I+2*ENDDODK,1,0,ALL或CPINTF,ALL,0.001因为你选用的单元有六个自
28、由度,如果只约束三个,程序是不会运行的.另:三次循环语句的I相等,约束UY时,UX的耦合就被删掉了,最后只剩UZ了这样修改:c*耦合练习/PREP7K,1,0,0K,2,0.1,0L,1,2K,300,0,-10000LGEN,100,1,0.1,2ET,1,BEAM188MP,EX,1,2.1e11MP,PRXY,1,0.3MP,DENS,1,0.783e4SECTYPE,1,BEAM,T,0SECOFFSET,CENTSECDATA,0.06,0.03,0.003,0.006,0,0,0,0,0,0LSEL,ALLLATT,1,1,1,300LESIZE,ALL,1,1,1LMESH,AL
29、Lcpintf,allDK,1,ux,0,UY,UZDK,200,UY,UZACEL,0,9.8,0,FINISH一个流固耦合的例子这个例子关于装有水的水杯旋转,是轴对称问题,为了简化,所以选择了平面模型*SET,RAD,0.8*SET,h,1*SET,g,9.8*SET,OMEGAR,2*SET,ROU,1000/PREP7ET,1,FLUID79KEYOPT,1,3,1MP,EX,1,2E9MP,DENS,1,ROUK,1K,2,RADK,3,RAD,HK,4,HK,4,HA,1,2,3,4LESIZE,ALL,10AMESH,ALLFINISH/SOLDL,2,UXDL,1,UYNSEL
30、,S,LOC,XDSYM,SYMM,XD,ALL,UXD,ALL,UXNSEL,ALLACEL,GOMEGA,OMEGARSOLVEFINISH/POST1SET,LASTPLNSOL,U,X,0,1*SET,UCENT,UY(22)*SET,UEDGE,UY(12)*SET,UELEV,UEDGE-UCENTansys从9.0发展到10.0,一个最大的进步就是流固耦合计算更加规范,这一点已远领先于其他同类软件,实现了单向耦合到即时双向耦合的飞跃,使用户对于解决流固耦合问题又多了一种选择,希望大家对多种方法物理环境转换,fsi,mfx等进行讨论,提供一下案例本人抛砖引玉:使用物理环境法进行流固
31、耦合的实例及讲解流道中有一橡胶垫阻碍水的流动,入口速度为2m/s,其他参数将在命令流中详细给出。求解水通过此流道的压力降,以及稳态条件下橡胶垫的变形。/prep7/sho,gasket,grphshpp,offET,1,141!Fluid-staticmeshET,2,56,!HyperelasticelementFluidStructureInteraction-MultiphysicsDeformationofagasketinaflowfield.!Elementplotsarewrittentothefilegasket.grph.-Waterflowsinaverticalpipet
32、hroughaconstructionformedbyarubbergasket.-DeterminetheequilibriumpositionofthegasketandtheresultingflowfieldTOC o 1-5 h z|Boundaryofmorphingfluid|gasket|Boundaryofmorphingfluid(sf)|!1.Buildthemodeloftheentiredomain:!Fluidregion-staticmesh!GasketleavesaholeinthecenteroftheductMorphingFluidregionisaus
33、erdefinedregionaroundthegasket.Thefluidmeshherewilldeformandbeupdatedasthegasketdeforms.ParameterizeDimensionsintheflowdirection!yent=0.0!Ycoordinateoftheentrancetothepipedyen=1.0!Undeformedgeometryflowentrancelengthysf1=yent+dyen!Ycoordinateofentrancetothemorphingfluidregiondsf1=0.5!Thicknessofupst
34、reamygas=ysf1+dsf1!Ycoordinateofthebottomofthegasketdg=0.02!Thicknessofthegasketdg2=dg/2.ytg=ygas+dg!Ycoordinateoftheinitialtopofthegasketdsf2=0.5!Thicknessofdownstreamregionysf2=ytg+dsf2!YofTopofthedownstreammorphingfluidsregiondyex=6.0!Exitfluidlengthx=0.!LocationoftheaxisymmetricCenterlinedgasr=.
35、20!Initialspanofgasketpiper=0.3!Radiusofthepipexrgap=piper-dgasr!radiusofcompletelyunobtructedflowpassage!Creategeometry!rect,xrgap,piper,ygas,ytg!A1:Gasket(keypoints1-4)rect,x,piper,ysf1,ysf2!A2:Morphingfluidregionrect,x,piper,yent,ysf1!A3:Fluidregionwithstaticmeshrect,x,piper,ysf2,ysf2+dyex!A4:Flu
36、idregionwithstaticmeshaovlap,allk,22,xrgap+dg2,ygas+dg2rarc=dg2*1.1larc,1,4,22,rarcal,6,4adelete,7al,6,3,22,7,8,5,21,1!MeshDivisioninformationngap=10!Numberelementsacrossthegapngas=10!Numberofelementsalongthegasketrgas=-2!Spacingratioalonggasketnflu=ngap+ngas!Numberofelementsacrossthefluidregionrafl
37、u=-3!Spacefluidelementsnearthewallsandcenternenty=8!Elementsalongflow-entranceraent=5!Sizeratiointheinletregionnfl1=20!Elementsalongflow-firstmorph.fluid.nthgas=4!Elementsinthegasketnfl2=3!Elementsalongflow-secondmorph.fluid.next=30!Elementsalongflow-exitregionrext=6!Sizeratioinflowdirectionofoutlet
38、rafls=12!Initialelementspacingratio-morph.fluidlesize,1,ngas,rgaslesize,3,ngas,rgasnfl11=nfl1*2+9lsel,s,2,4,2!(Modifylesizeofline8ifchanginggasketmesh)lesize,all,nthgasallslesize,5,nflu,raflulesize,7,nflu,raflulesize,9,nflu,raflulesize,15,nflu,raflulesize,18,nenty,1./raentlesize,17,nenty,1./raentles
39、ize,21,nfl1,raflslesize,8,nfl11,-1./(rafls+3)lesize,22,nfl1,raflslesize,19,next,rextlesize,20,next,rextAATT,MAT,REAL,TYPE-Settheattributesfortheareasasel,s,1,2aatt,2,2,2!Gasket(material2)asel,s,3cm,area2,areaalist!Listareaselectedforfurthermorphingasel,a,5,6aatt,1,1,1!Fluidarea(material1)allseshape,
40、2asel,u,2,3amesh,alleshape,0asel,s,2,3amesh,all!Createelementplotandwritetothefilegasket.grphasel,s,1,3esla,s/Title,Initialmeshforgasketandneighborhoodeplot/ZOOM,1,RECT,0.3,-0.6,0.4,-0.5alls!CreatePhysicsEnvironmentfortheFluidet,1,141et,2,0!GasketbecomestheNullElementvin=3.5e-1!Inletwatervelocity(me
41、ters/second)!CFDSolutionControlflda,solu,flow,1flda,solu,turb,1flda,iter,exec,400flda,outp,sumf,10!CFDPropertyInformationflda,prot,dens,constantflda,prot,visc,constantflda,nomi,dens,1000.!1000kg/m3fordensity-waterflda,nomi,visc,4.6E-4!4.6E-4kg-s/m(viscosityofwater)flda,conv,pres,1.E-8!Tightenpressur
42、eequationconvergence!CFDBoundaryConditions(AppliedtoSolidModel)lsel,s,8,17,9lsel,a,20dl,all,vx,0.,1!Centerlinesymmetrylsel,s,9dl,all,vx,0.,1dl,all,vy,vin,1lsel,s,2lsel,a,18,19lsel,a,21,22dl,all,vx,0.,1dl,all,vy,0.,1lsel,s,1,3,2lsel,a,6dl,all,vx,0.,1dl,all,vy,0.,1lsel,s,15dl,15,pres,0.,1!InletConditi
43、on!OuterWall!Gasket!Outletpressureconditioncreatenamedcomponentofnodesatthebottomofgasketlsel,s,1nsll,1cm,gasket,nodenlist!Listinitialnodalpositionsofthebottomofthegasket/com,+STARTINGgasketcoordinatesalls/title,FluidAnalysisphysics,write,fluid,fluid!CreatePhysicsEnvironmentfortheStructure!physics,c
44、learet,1,0!TheNullelementforthefluidregionet,2,56!Gasketelement-material2mp,ex,2,2.82E+6!Youngsmodulusforrubbermp,nuxy,2,0.49967!Poissonsratiofortherubbertb,mooney,2tbdata,1,0.293E+6!Mooney-RivlinConstantstbdata,2,0.177E+6!lsel,s,2nsll,1d,all,ux,0.d,all,uy,0.!Fixtheendofthegasketalls/title,structura
45、lanalysisfinish/soluantype,staticnlgeom,oncnvtol,f,-1physics,write,struc,strucphysics,clearsave!Fluid-StructureInteractionLoop!loop=25toler=0.005!Maximumallowednumberofloops!Convergencetoleranceformaximumdisplacement*dim,dismax,array,loop!Definearrayofmaximumdisplacementvalues*dim,strcri,array,loop!
46、Definearrayofconvergencevalues*dim,index,array,loop*do,i,1,loop/soluphysics,read,fluid*if,i,ne,1,thenflda,iter,exec,100*endifsolvefini!Executefluid-structuresolutions!Readinfluidenvironment!Execute100globaliterationsfor!eachnewgeometry!FLOTRANsolution!endoffluidportionphysics,read,struc!Readinstruct
47、uresenvironment/assign,esave,struc,esav!Filesforrestartingnonlinearstructure/assign,emat,struc,emat*if,i,gt,1,thenparsave,allresume!Structuralrestartloop!Saveparametersforconvergencecheck!ResumeDB-toreturnoriginalnodepositionsparresume/prep7!Resumeparametersneededforconvergencecheckantype,stat,restf
48、ini*endif/solusolc,offlsel,s,1,3,2!Selectproperlinestoapplyfluidpressureslsel,a,6nsll,1esel,s,type,2!totheentiregasketsurfaceldread,pres,last,rfl!ApplypressuresurfaceloadfromFlotranallsrescontrol,none!Donotusemultiframerestartfornonlinearsolve*if,i,eq,1,thensave!saveoriginalnodelocationsatthefirstru
49、n*endiffini/post1cmsel,s,gasketnsort,u,sum,1,1*get,dismax(i),sort,0,max!Getthemaximumdisplacementvaluestrcri(i)=toler*dismax(i)allsfini/prep7mkey=2!Selectlevelofmeshmorphingforfluiddamorph,area2,mkey!Performmorphingofmorphingfluid!Createelementplotandwriteitinfilegasket.grphfini/prep7et,1,42asel,s,1
50、,3esla,s/Title,EPLOTafterDAMORPH,area2,%mkey%stepnumber%i%eplotalls!cmsel,s,gasketnlist!Listupdatedcoordinatesofbottomofgasketforcomparison/com,+UPDATEDgasketcoordinatesallsfini/assign,esav/assign,ematCheckingconvergencecriteriaimax=iindex(i)=i*if,i,gt,1,thenstrcri(i)=abs(dismax(i)-dismax(i-1)-toler
51、*dismax(i-1)*if,strcri(i),le,0,thenstrcri(i)=0*exit!Stoploopingifconvergenceisreached*endif*endif*enddoEndoftheComputationalloopsave!NodalcoordinatesofdeformedgeometryaresavedConvergenceprintout*vwrite(/LoopNo.Max.DisplacementStruct.Convergence)/nopr*vlen,imax*vwrite,index(1),dismax(1),strcri(1)(f7.
52、0,2e17.4)finishPostprocessingoftheresults1.Flotranresults.physics,read,fluid/post1set,last/Title,Flotran:StreamlinesNearGasketplnsol,strm/Title,Flotran:PressureContoursplnsol,presfini2.Structuralresults.physics,read,struc/post1set,lastupcoord,-1!Returnoriginalnodepositionschangedbymorphing/Title,Str
53、ucturalresults:vonMisesStressplnsol,s,eqv,1,1fini讲解:橡胶垫在流体作用下发生变形,变形又反过来影响流体形状,例子中设定的流固区,在流体分析和固体分析中都作为分析对象,在结构分析中求解流固区可得到网格的变形,用于流场分析,此区域在流体物理环境中赋予流体属性,在结构物理环境中附于结构属性,这一点是说允许由于橡胶垫变形引起网格变形。纯流体区域仅在流体物理环境中使用,橡胶垫也只在结构物理环境中使用。三个区分别是固体区-橡胶垫;流体区;流固区流体区域编号一定要设为1在创建流体环境时,流体和流固两区分配流体属性,此时固体区,也就是橡胶垫为null,设定好之
54、后将流体物理环境写入物理环境文件。然后清除流体物理环境,定义结构物理环境,此时流体区域为null,定义载荷步和求解选项,写入流体物理环境。最后流/固求解循环!给大家推荐一本讲解流固耦合的书,感觉还不错!张立翔,杨柯.流体结构互动理论及其应用科学出版社。2004.3再给大家推荐一本:居荣初,曾心传。弹性结构与液体的耦联振动理论地震出版社,1983针对液面晃动问题,ANSYS/LS-DYNA提供以下三种方法:1、流固耦合流固耦合是ANSYS/LS-DYNA计算流体和结构间相互作用的最常用的方法,包括单物质+空材料和多物质耦合两大类,流体单元有Euler和ALE两种。其涉及的主要命令如下:*cont
55、rol_ale算法选择有两种2、3,分别为Euler和ale实质上此处二者没有区别,只是因为兼容性进行的设置;两种精度供选择单精度、双精度。*section_solid_ale对单物质+空材料为12号算法,对多物质耦合为11号算法。*ale_multi-material_group进行多物质的定义,最多可以定义20种材料。可以根据物质间能否混合将各种材料定义在不同的材料组ID中。ale_multi-material_system_group该命令决定流体物质的算法(Euler或Ale),或是在运算过程中切换使用两种算法,并可对流体物质进行自由度约束。该命令多与下列三个命令结合使用:ale_mu
56、lti-material_system_curve定义ale系统的运动曲线。ale_multi-material_system_node通过一系列节点定义ale的运动参考坐标系统。ale_multi-material_system_switch定义euler和ale参考系统的切换。上述命令是流体物质涉及的关键字,而我们知道,结构采用Lagrange单元来离散,二者之间的耦合通过下列命令来实现:*constrained_lagrange_in_solid耦合算法分为两种:罚耦合和运动约束。前者遵循能量守恒,后者遵循动量守恒。一般令结构网格较流体网格密以保证界面不出现渗透,否则可以增大NQUAD参
57、数值来增加耦合点,如设置该值为4或5。在970中,此命令第三行又增加了一个控制字ILEAK0,1或2,一般可设置为1。最后给出一个典型算例水箱跌落的部分关键字:*KEYWORD*TITLEboxwater2.k:droppingawaterboxontoarigidplatform$=$1EXECUTIONCONTROLS$=*CONTROL_TERMINATION$ENDTIMENDCYCDTMINENDENGENDMAS0.050000000.000000000.0000000*CONTROL_TIMESTEP$DTINITTSSFACISDOTSLIMTDT2MSLCTMERODEMS1
58、ST0.00000000.200000000.00000000.0000000000*CONTROL_ENERGY$HGENRWENSLNTENRYLEN222$=$3OUTPUTCONTROLS$=*DATABASE_BINARY_D3PLOT$DTCYCLLCDTBEAM0.00050000*DATABASE_GLSTAT0.0001000$=$5|SECTIONS|PARTS|DEFs$=*PARTwaterinthebox$PIDSECIDMIDEOSIDHGIDGRAVADPOPTTMID1110000*SECTION_SOLID_ALE$SECIDELFORMAET12$AFACB
59、FACCFACDFACSTARTENDAAFAC0.00000000.00000000.00000000.00000000.00000000.0000000$*MAT_NULL$MIDRHOPCMUTERODCERODYMPR1000.0000-1.000+100.00000000.00000000.00000000.00000000.0000000*EOS_LINEAR_POLYNOMIAL$EOSIDC0C1C2C3C4C5C60.00000001.50000+90.00000000.00000000.00000000.00000000.0000000$E0V00.00000001.000
60、0000$=*PARTvoidportioninthebox1110000*INITIAL_VOID_PART2$=*PARTrigidboxcontainingwater$PIDSECIDMIDEOSIDHGIDGRAVADPOPTTMID3300000*SECTION_SOLID$SECIDELFORMAET0*MAT_RIGID32000.00001.00000+80.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.00000000.000
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论