版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 对机械能守恒的理解对机械能守恒的理解扬州市宝应县画川高级中学随着学习的深入,机械能守恒定律的内容和深度在不断的拓展,由最初的物体在只有重力做功情况下机械能守恒,拓展到含有弹簧的系统机械能守恒,以及多物体的系统机械能守恒问题。机械能守恒定律在教科版教材(必修2)中是这样表述的:在只有重力或弹力做功的物体系统内,动能与势能会发生相互转化,但机械能的总量保持不变。机械能守恒定律的条件拓展为:系统内各物体间发生动能、重力势能、弹性势能的相互转移或转化,而没有转化为其他形式的能量时,系统的机械能就守恒。它是力学中的一条重要定律,是更普遍的能量守恒定律的一种特殊情况。一、机械能守恒条件的全面理解1、从功
2、和能的关系角度理解从功能关系的角度看,重力(弹簧的弹力)做功不会改变物体的机械能,除重力(弹簧的弹力)之外的其他力做功必然发生机械能的转化或转移。因此,只有重力(弹簧的弹力)做功可具体表现为三种情况:(1)只受重力(弹簧的弹力)而不受其他力的作用。如自由落体和各种抛体运动(不计空气阻力)。(2)还受其他力作用,但其他力不做功。如物体沿固定的光滑曲面运动,尽管受支持力作用,但它不做功。(3)其他力做功,但做功的代数和为零。情景1如图1所示,一固定的楔形木块,其斜面倾角为30,小另一边与地面垂直,顶上有一定滑轮。一条柔软的细线跨过定滑轮,两少牛端分别与物块A和B连结,A的质量为4m,B的质量为m,
3、开始时萤将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间无摩擦。设当A沿斜面下滑S距离后,细线突然断了。求物块B上升离地的最大高度H。分析绳中的拉力TA和TB都做功,这时A和B各自的机械能都不守恒,但WA+WB=0,因此,对A和B构成的系统只有重力做功,总的机械能守恒。4岡铢in日一扣5赫j解得:V=对由A和B构成的系统,由机械能守恒定律得:细线突然断后,B做竖直上抛运动,由机械能守恒定律得:2从能量转化的角度理解从能量转化角度看,机械能守恒定律是普遍的能的转化与守恒定律的特殊情况,就是指无其他形式的能量(力学中特别是指与摩擦和介质阻力相关的热能)参与转化,只发生动能和势
4、能相互转化的过程,机械能的总量保持不变。情景2如图2所示,小物块位于光滑斜面上,斜面位于光滑水平地面上,在小物块沿斜面下滑的过程中,从能量转化的角度分析:由于地面和斜面都是光滑的,没有热能的转化,只有动能和势能参与转化,而斜面的机械能不断增加。因此,斜面的机械能增加一定来自物块的机械能减少,但斜面与物块组成的系统总的机械能守恒。但如果由功能关系出发,虽然可以分析出由于两者间的相对运动,斜面受的压力和物块受的支持力与位移都不垂直,都各自做了功,各自的机械能一定改变,但是要确定该系统的机械能是否守恒,这时就需要确定是否等于零,这在中学阶段是有一定难度的。通过以上分析,笔者认为可以达成如下共识:就守
5、恒条件而言,前者侧重于能量转化的原因,即只有重力(弹簧的弹力)做功,描述更充分,更严谨,有利于学生对功和能关系的深刻理解,从而突出过程中各力做功情况的分析,判断能的转化情况;而后者侧重于能量转化的现象和结果无其他形式的能参与转换,只发生动能和势能的相互转化,描述更通俗,更普遍,有利于学生从能量的形式和增减现象入手判断能量的转化情况,树立更广泛意义上的能量转化思想和利用能量守恒分析问题的方法。二、机械能守恒定律的表达式随着机械能守恒定律的拓展,可以从三个角度用方程表达机械能守恒定律。1从守恒的角度在所研究的过程中,任选两个不同的状态,研究对象的机械能必定相等,即。通常我们关心的是一个过程的首、末
6、两状态,此式也可理解成首、末两状态机械能相等,但应注意的是,首、末两状态机械能相等,不能保证研究对象在所研究过程中机械能一定守恒,只有在过程中任选一个状态,其机械能都保持恒定值时,研究对象的机械能才是守恒的。选取某一平面为零势能面,如果含有弹簧则弹簧处于原长时弹性势能为零,系统末状态的机械能和初状态的机械能相等。即:Ek末+Ep末=Ek初+Ep初2从能量转化的角度在所研究的过程中,研究对象(或系统)动能的增加量等于势能(包括重力势能和弹性势能)的减少量;反之,研究对象(或系统)动能的减少量等于势能的增加量,即。系统的动能和势能发生相互转化时,若系统势能的减少量等于系统动能的增加量,系统机械能守
7、恒。即:AE减4E增K分析B球重力势能减少了,A球重力势能增加了枕童应,则系统重力势能共减少了情景3如图是一个半径为R的光滑固定圆柱体的横截面,一根轻绳两端各系一个质量均为m的小球A、B而处于静止状态,两球与圆心在同一个水平线上。在受到轻微的扰动后,B球下落,A球上升,求A球到达圆柱体的最高点时对柱面的压力。3从能量转移的角度系统某一部分机械能减少了多少,其它部分的机械能就增加了多少;反之亦然,可用表示,这种表述形式适用于某一系统机械能守恒的表述。也可理解为系统内某一物体动能(或势能)减少了多少,该物体的势能(或动能)以及系统内其它物体的机械能就要增加多少。简单地说,在所研究的系统内,机械能有
8、减就有增,减少的量值应与增加的量值相等。系统中有A、B两个物体或更多物体,若A机械能的减少量等于B机械能的增加量,系统机械能守恒。E减也E增情景8如图所示,半径为R、圆心为0的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上。一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。将两个小圆环固定在大圆环竖直对称轴的两侧8=30。的位置上。在两个小圆环间绳子的中点C处,挂上一个质量M=的重物,使两个小圆环间的绳子水平,然后无初速释放重物M。设绳子与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离。Mgh=2mg+(&in分析重物先向下加速,然后向下减速,当重物速度为零时
9、,下降的距离最大。此时质量为m的重物速度也为零,根据系统机械能守恒,M机械能的减少量等于m机械能的增加量,设下降的最大距离为h。h=R(另解h=0舍去)本题如果规定零势能面从守恒角度列式,就显得很不方便,也没有必要以上三种表达式各有特点,在不同的情况下应选取合适的表达式灵活运用,不要拘泥于某一种,这样问题才能变得简单快捷。下面我们就具体问题来谈谈如何巧用机械能守恒定律解题。三、应用机械能守恒定律的三种类型1、单个物体与地球组成的系统研究单个物体与地球组成的系统机械能是否守恒,首先应对物体进行受力分析,分析各力的做功情况,若只有重力做功,其他力不做功或做功的代数和为零,则此系统机械能守恒。情景6
10、质量相等的两个小球A、B分别用悬线挂在等高的两点,A球的悬线比B球的悬线长,如图1所示。把两球的悬:线均拉到水平后将小球无初速释放,则经最低点时(以悬点为零势能丨点),A球动能与B球动能相比如何,两者机械能相比如何?丨:1分析A球、B球在向下运动时,虽然受重力和绳子拉力,但拉力不做功,只有重力做功,因而机械能守恒。由于初始状态时两者机械能相等,因此到达最低点时,两球机械能仍相等。但A球在最低点时重力势能较小,所以A球的动能大。2、物体、弹簧与地球组成的系统物体、弹簧与地球组成的系统中,若只有物体的重力和弹簧的弹力做功,其他力不做功或做功的代数和为零,弹簧的弹性势能与物体机械能之间发生转化,则系
11、统的机械能守恒。情景6如图2,轻弹簧一端与墙相连,质量为4kg的木块沿光滑的水平面以5m/s的速度运动并压缩弹簧k,求弹簧在被压缩过程中最大的弹性势能及木块速度减为3m/s时弹簧的弹性势能。分析当木块的速度减为零时,弹簧的压缩量最大,弹性势能最大,设弹簧的最大弹性势能为超踏,木块和弹簧组成的系统(包括地球)机械能守恒E=二507则有rp+Evl=-0当木块速度为张兀时,弹簧的弹性势能为%,则有所以情景6如图所示,质量为m的物体A经一轻质弹簧与下方地面上的质量为m的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态。一条不2可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都
12、处于伸直状态,A上方的一段绳沿竖直方向。现在挂钩上挂一质量为m的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升。若将C换成另一个质量为(m+m)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度大小是多少?已知重力加速度为go分析m经过向上加速然后再减速的过程,当弹簧对B产生向上的拉力T,且T=mg时,此时A的速度也刚好减为零,B就刚好离开地面,此时C的速度也为零。弹簧由最初的被压缩到最后的被拉长,A上升的高度和C下降的高度为:设在此过程中弹簧弹性势能的变化量为AE,根据系统机械能守恒,C重力势能的减少量等于A重力势能的增加量和弹性势能的变化量芝和。gZ?=+AE
13、p将C换成D后,A上升同样的高度,B刚离地,弹性势能的变化量和前一种情况一样,根据系统机械能守恒,D重力势能的减少量等于A重力势能的增加量、A、D动能的增加量和弹性势能的变化量之和。脚1+(陀i+欣1+蚀)护+A坷2蚀(阻+由以上三式解得:卩本题的关键是两次B刚离开地面,弹簧长度变化相同,弹性势能变化量相同,因此巧妙的用AE来表示这个变化量,而不纠缠于初、末状态弹性势能的多少,这样就抓住了问题的要点,而不至于走向歧途。其实在高中弹性势能的表达式是不要求的,因此凡是遇到弹性势能的问题均可象本题一样去处理。3、两个或多个物体与地球组成的系统在此类问题中,用做功的方式不好判断系统的机械能是否守恒,但
14、系统内的物体在相互作用的过程中,只有动能和势能之间的相互转化,无其他能量参与,则系统的机械能守恒。情景3如图3所示,A和B两个小球固定在一根轻杆的两端,此杆可绕穿过其中心的水平轴O无摩擦转动。现使轻杆从水平状态无初速度释放,发现杆绕O沿顺时针方向转动,则杆从释放起转动90的过程中:B球的重力势能减少,动能增加;A球的重力势能增加,动能减少;A球的重力势能和动能都增加了;A球和B球及地球组成的系统机械能守恒。分析A、B球及地球组成的系统,由于不计摩擦,在运动过程中只有动能和重力势能之间相互转化,无其他能量参与,系统总机械能守恒。杆从释放起转动90的过程中,A球的动能增加,重力势能增加,即A球的机
15、械能增加,因此B球的机械能减少,减少量等于A球机械能的增加量。B球的重力势能减少,动能增加,所以答案为A、C、D。情景3如图所示,质量均为m的小球A、B、C,用两根长为1的轻绳相连,置于高为h的光滑水平面上,lh,A球刚跨过桌边,若A球、B球相继下落着地后均不再反弹,求C球刚离开桌边时的速度大小。分析思路1:取地面为零势能面,设A球落地时速率为v,从A球开始运动到落地的过程1中,A、B、C三球组成的系统机械能守恒,有:设B球落地时速率为v,从A球落地后到B球落地的过程中,B、C两球组成的系统机械21212能守恒,有:(2聊)卩+2mgh=+mgh此速度就是C球离开桌边时的速度。这是从守恒的角度
16、列式,分别写出系统的初末状态的动能和势能,再列方程求解,这种思路清晰明了,简单易行,需要注意的是能量要一一弄清,不能丢三落四。思路2在A球落地的过程中,系统减少的势能为Ep减=嘟,系统增加的动能为Ek增m或=(恥,由机械能守恒定律得:八八在B球落地的过程中,系统减少的势能为E减=mgh,系统增加的动能为AE增p减k增_扣険)寸-扣咖f由机械能守恒定律得辭二扣叽2_扣检2一上2,由机械能守恒定律得:22这是从势能和动能转化的角度列式,思路也很清晰,需要注意的是势能的减少或动能的增加是系统的,而不是某个物体的。象液柱、链条等不能被看做质点的物体,应考虑其重心相对于零势能面的高度差。情景4如图所示,
17、粗细均匀,两端开口的U型管内装有同种液体。开始时两边液面高度差为h,管中液体总长度为4h,打开阀门让液体自由流动,不计任何摩擦。求当两侧液面高度相等时,左侧液面下降的速度。分析思路1聊=学x扌曲+(4聊)/取开始时右侧液面所在的水平面为零势能面,设长度为h的液体质量为m,由系统机械能守恒定律得:思路2:可以用填补的等效方法,最终两侧液面等高,可以看成把高出右侧一半高度的液柱填补到右侧,如图所示。则系统重力势能的减少量为22,研究对象是整个液柱,势能的减少是局部的,动能的增加是整个液柱,整个液柱每一小部分的速率都是相等的。mg=(Am)v则从能量转化的角度来列式,有:222情景5如图,AB为光滑
18、的水平面BC是倾角为0的足够长的固定光滑斜面,AB、BC间用一小段光滑的圆弧轨道相连。一根长为L的均匀柔软链条开始时静止的放在ABC面上,其一端D到B的距离为La,现自由释放链条,求链条的D端滑到B点时,链条的速率是多大?分析可以采用填补法巧妙的解题,将水平面上长(La)的链条填补到斜面上链条的下端,由系统势能的减少量等于动能的增加量得:LaLa1+-)sin&1=mv情景7如图所示,半径为r,质量不计的圆盘盘面与地面垂直,圆心处有一个垂直盘面的光滑水平定轴0,在盘的有边缘固定一个质量为m的小球A,在0点正下方离0点r/2处固定一个质量也为m的小球B,放开盘让其自由转动。问:(1)当A转动到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多大?3)在转动过程中半径0A向左偏离竖直方向的最大角度是多大?K分析(1)当A转动到最低点时,A球重力势能减少了欣b,B球重力势能增加了,所以,两小球的重力势能之和减少了mgr2)由于圆盘转动过程中,只有两球重力做功,系统机械能守恒,两球重力势能之和的减少等于两球动能的增加,设A球转到最低点时,A、B的线速度分别为v、v,则:AB因两球固定在同一个圆盘上,转动过程中角速度相等,所以v=2vABB的机械能增加了bEp=mg(1+sin&)(3)设半径OA向左偏离
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影项目委托协议书
- 2025年度生态旅游区个人山林承包管理协议书范本4篇
- 人教版小学五年级美术下册教案+教学分析
- 2025年度个人宠物医疗无抵押借款协议标准3篇
- 2025年个人房产买卖合同(含专业评估报告)
- 2025-2030全球过热过载保护器行业调研及趋势分析报告
- 2025-2030全球OLED图形显示模块行业调研及趋势分析报告
- 2025-2030全球工程用行星减速机行业调研及趋势分析报告
- 2025-2030全球曲轴现场加工行业调研及趋势分析报告
- 2024年农村文化建设知识竞赛试题及答案
- 乳腺癌的综合治疗及进展
- 【大学课件】基于BGP协议的IP黑名单分发系统
- 2025年八省联考高考语文试题真题解读及答案详解课件
- 信息安全意识培训课件
- 2024年山东省泰安市初中学业水平生物试题含答案
- 美的MBS精益管理体系
- 中国高血压防治指南(2024年修订版)解读课件
- 2024安全员知识考试题(全优)
- 2024年卫生资格(中初级)-中医外科学主治医师考试近5年真题集锦(频考类试题)带答案
- 中国大百科全书(第二版全32册)08
- 第六单元 中华民族的抗日战争 教学设计 2024-2025学年统编版八年级历史上册
评论
0/150
提交评论