版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级数学下册第二十九章直线与圆的位置关系专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知点A是O外一点,且O的半径为3,则OA可能为( )A1B2C3D42、如图,ABC周长为20cm,BC
2、6cm,圆O是ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则AMN的周长为( )A14cmB8cmC7cmD9cm3、如图,AB为O的切线,切点为A,连接AO、BO,BO与O交于点C,延长BO与O交于点D,连接AD若ABO36,则ADC的度数为( )A54B36C32D274、如图所示,O的半径为5,点O到直线l的距离为7,P是直线l上的一个动点,PQ与O相切于点Q则PQ的最小值为( )ABC2D25、在ABC中,点O为AB中点以点C为圆心,CO长为半径作C,则C 与AB的位置关系是( )A相交B相切C相离D不确定6、已知O的直径为10cm,圆心O到直线l的距离为5cm,则直线l
3、与O的位置关系是( )A相离B相切C相交D相交或相切7、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm8、如图,等边ABC内接于O,D是上任一点(不与B、C重合),连接BD、CD,AD交BC于E,CF切O于点C,AFCF交O于点G下列结论:ADC60;DB2DEDA;若AD2,则四边形ABDC的面积为;若CF2,则图中阴影部分的面积为正确的个数为()A1个B2个C3个D4个9、在同一平面内,有一半径为6的O和直线m,直线m上有一点P,且OP=4;则直线m与O的位置关系是 ( )A相交B相离C相切D不能确定10、如图,在RtABC中,以边上
4、一点为圆心作,恰与边,分别相切于点,则阴影部分的面积为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,ACB90,O是ABC的内切圆,三个切点分别为D、E、F,若BF2,AF3,则ABC的面积是_2、已知五边形是的内接正五边形,则的度数为_3、O的半径为3cm,如果圆心O到直线l的距离为d,且d=5cm,那么O和直线l的位置关系是_4、如图,在ABC中,ABAC,BC2,以点A为圆心作圆弧,与BC相切于点D,且分别交边AB,AC于点EF,则扇形AEF的面积为 _(结果保留)5、如图,PA,PB是的切线,切点分别为A,B若,则AB的长为
5、_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,平分交于点D,点O在上,以点O为圆心,为半径的圆恰好经过点D,分别交、于点E、F(1)试判断直线与的位置关系,并说明理由;(2)若,求阴影部分的面积(结果保留)2、如图,O是ABC的外接圆,ABC=45,OCAD,AD交BC的延长线于D,AB交OC于E(1)求证:AD是O的切线;(2)若AE=,CE=2,求O的半径和线段BC的长3、如图,在中,BO平分,交AC于点O,以点O为圆心,OC长为半径画(1)求证:AB是的切线;(2)若,求的半径4、如图,直线MN交O于A,B两点,AC是直径,AD平分CAM交O于D,过D作DEMN于E(1
6、)求证:DE是O的切线;(2)若DE8,AE6,求O的半径5、如图,是的直径,是半径,连接,延长至点,使,过点作交的延长线于点(1)求证:是的切线;(2)若,求半径的长-参考答案-一、单选题1、D【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外【详解】解:点A为O外的一点,且O的半径为3,线段OA的长度3故选:D【点睛】此题考查了点和圆的位置关系与数量之间的联系:点到圆心的距离大于圆的半径,则点在圆外2、B【解析】【分析】根据切线长定理得到B
7、FBE,CFCD,DNNG,EMGM,ADAE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得AMN的周长【详解】解:圆O是ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,BFBE,CFCD,DNNG,EMGM,ADAE,ABC周长为20cm,BC6cm,AEAD4(cm),AMN的周长为AM+MG+NG+ANAM+ME+AN+NDAE+AD4+48(cm),故选:B【点睛】本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE和AD的长,难度不大3、D【解析】【分析】由切线的性质得出OAB=90,由直角三角形的性质得出AOB=90-ABO=5
8、4,由等腰三角形的性质得出ADC=OAD,再由三角形的外角性质即可得出答案【详解】解:AB为O的切线,OAB90,ABO36,AOB90ABO54,OAOD,ADCOAD,AOBADC+OAD,ADCAOB27;故选:D【点睛】本题考查了切线的性质、直角三角形的性质、等腰三角形的性质以及三角形的外角性质;熟练掌握切线的性质和等腰三角形的性质是解题的关键4、C【解析】【分析】由切线的性质可知OQPQ,在RtOPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OPl时,OP最小,利用勾股定理可求得PQ的最小值【详解】PQ与O相切于点Q,OQPQ,PQ2=OP2-OQ2=OP2-52=OP2-2
9、5,当OP最小时,PQ有最小值,点O到直线l的距离为7,OP的最小值为7,PQ的最小值=,故选:C【点睛】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键5、B【解析】【分析】根据等腰三角形的性质,三线合一即可得,根据三角形切线的判定即可判断是的切线,进而可得C 与AB的位置关系【详解】解:连接,,点O为AB中点CO为C的半径,是的切线,C 与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键6、B【解析】【分析】圆的半径为 圆心O到直线l的距离为 当时,直线与圆相切,当时,直线与圆相离,当时,直线与圆相交,根据原理
10、直接作答即可.【详解】解: O的直径为10cm,圆心O到直线l的距离为5cm, O的半径等于圆心O到直线l的距离, 直线l与O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.7、D【解析】【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆
11、,作边心距转化为直角三角形的问题是解决问题的关键8、C【解析】【分析】如图1,ABC是等边三角形,则ABC60,根据同弧所对的圆周角相等ADCABC60,所以判断正确;如图1,可证明DBEDAC,则,所以DBDCDEDA,而DB与DC不一定相等,所以判断错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,先证明ABKACD,可证明S四边形ABDCSADK,可以求得SADK,所以判断正确;如图3,连接OA、OG、OC、GC,由CF切O于点C得CFOC,而AFCF,所以AFOC,由圆周角定理可得AOC120,则OACOCA30,于是CAGOCA30,则COG2CAG60,可证明A
12、OG和COG都是等边三角形,则四边形OABC是菱形,因此OACG,推导出S阴影S扇形COG,在RtCFG中根据勾股定理求出CG的长为4,则O的半径为4,可求得S阴影S扇形COG,所以判断正确,所以这3个结论正确【详解】解:如图1,ABC是等边三角形,ABC60,等边ABC内接于O,ADCABC60,故正确;BDEACB60,ADCABC60,BDEADC,又DBEDAC,DBEDAC,,DBDCDEDA,D是上任一点,DB与DC不一定相等,DBDC与DB2也不一定相等,DB2与DEDA也不一定相等,故错误;如图2,作AHBD于点H,延长DB到点K,使BKCD,连接AK,ABK+ABD180,A
13、CD+ABD180,ABKACD,ABAC,ABKACD(SAS),AKAD,SABKSACD,DHKHDK,AHD90,ADH60,DAH30,AD2,DHAD1, DK2DH2,SADK,S四边形ABDCSABD+SACDSABD+SABKSADK,故正确;如图3,连接OA、OG、OC、GC,则OAOGOC,CF切O于点C,CFOC,AFCF,AFOC,AOC2ABC120,OACOCA(180120)30,CAGOCA30,COG2CAG60,AOG60,AOG和COG都是等边三角形,OAOCAGCGOG,四边形OABC是菱形,OACG,SCAGSCOG,S阴影S扇形COG,OCF90,
14、OCG60,FCG30,F90,FGCG,FG2+CF2CG2,CF,(CG)2+()2CG2,CG4,OCCG4,S阴影S扇形COG,故正确,这3个结论正确,故选C【点睛】本题主要考查了等边三角形的性质与判定,圆切线的性质,圆周角定理,全等三角形的性质与判定,菱形的性质与判定,勾股定理,含30度角的直角三角形的性质等等,解题的关键在于能够熟练掌握相关知识进行求解9、A【解析】【分析】直接根据直线与圆的位置关系即可得出结论【详解】解:O的半径为6,直线m上有一动点P,OP=4,直线与O相交故选:A【点睛】本题考查的是直线与圆的位置关系,熟知O的半径为r,圆心O到直线l的距离为d,当d=r时,直
15、线l和O相切是解答此题的关键10、A【解析】【分析】连结OC,根据切线长性质DC=AC,OC平分ACD,求出OCD=OCA=30,利用在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,利用三角形面积公式求出,再求出扇形面积,利用割补法求即可【详解】解:连结OC,以边上一点为圆心作,恰与边,分别相切于点A, ,DC=AC,OC平分ACD,ACD=90-B=60,OCD=OCA=30,在RtABC中,AC=ABtanB=3,在RtAOC中,ACO=30,AO=ACtan30=,OD=OA=1,DC=AC=,DOC=360-OAC-ACD-ODC=360-
16、90-90-60=120,S阴影=故选择A【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键二、填空题1、6【解析】【分析】根据题意利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理即可得出答案【详解】解:连接DO,EO,O是ABC的内切圆,切点分别为D,E,F,OEAC,ODBC,CD=CE,BD=BF=2,AF=AE=3又C=90,四边形OECD是矩形,又EO=DO,矩形OECD是正方形,设EO=x,则EC=CD=x,在R
17、tABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,BC=3,AC=4,SABC=34=6.故答案为:6【点睛】本题主要考查三角形内切圆与内心,根据题意得出四边形OECF是正方形以及运用方程思维和勾股定理进行分析是解题的关键2、72#72度【解析】【分析】根据正多边形的中心角的计算公式: 计算即可【详解】解:五边形ABCDE是O的内接正五边形,五边形ABCDE的中心角AOB的度数为 72,故答案为:72【点睛】本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键3、相离【解析】【分析】根据直线和圆的位置关系的判定方法判断即可【详解】解:O的半径为
18、3cm,圆心O到直线l的距离为d5cm,dr,直线l与O的位置关系是相离,故答案为:相离【点睛】本题考查了直线和圆的位置关系的应用,注意:已知O的半径为r,如果圆心O到直线l的距离是d,当dr时,直线和圆相离,当dr时,直线和圆相切,当dr时,直线和圆相交4、#【解析】【分析】先判断出ABC是等腰直角三角形,从而连接AD,可得出AD=1,直接代入扇形的面积公式进行运算即可【详解】解:AB=AC=,BC=2,AB2+AC2=BC2,ABC是等腰直角三角形,BAC=90,连接AD,则AD=BC=1,则S扇形AEF=故答案为:【点睛】本题考查了扇形的面积计算、勾股定理的逆定理及等腰直角三角形的性质,
19、直角三角形斜边上的中线等于斜边的一半,难度一般,解答本题的关键是得出AD的长度及BAC的度数5、3【解析】【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:,分别为的切线,为等腰三角形,为等边三角形,故答案为:3【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线三、解答题1、 (1)BC与O相切,理由见详解(2)【解析】【分析】(1)根据题意先证明ODAC,即可证得ODB=90,从而证得BC是圆的切线;(2)由题意直接根据三角形和扇形的面积公式进行计算即可得到结论(1)解: BC与O相切证明:AD是BAC的平分线,BAD=CAD又OD=OA,OAD=
20、ODACAD=ODAODACODB=C=90,即ODBC又BC过半径OD的外端点D,BC与O相切;(2),ODB=90,在RtOBD中, 由勾股定理得:,SOBD= ODBD= ,S扇形ODF= ,阴影部分的面积=【点睛】本题考查切线的判定和扇形面积以及勾股定理,熟练掌握切线的判定是解答本题的关键2、 (1)见解析(2)4,【解析】【分析】(1)连接OA由及圆周角定理求出OAD=90,即可得到结论;(2)设O的半径为R,在RtOAE中,勾股定理求出R, 延长CO交O于F,连接AF,证明CEBAEF,得到,由此求出O的半径和线段BC的长(1)证明:连接OA, AOC+OAD=180,AOC=2A
21、BC=245=90,OAD=90, OAAD, OA是半径,AD是O的切线 (2)解:设O的半径为R,则OA=R,OE=R-2在RtOAE中,解得或(不合题意,舍去),延长CO交O于F,连接AF,AEF=CEB,B=AFE,CEBAEF, CF是直径,CF=8,CAF=90,又F=ABC=45, F=ACF=45,AF=, BC= 【点睛】此题考查了证明直线是圆的切线,勾股定理,相似三角形的判定及性质,直径所对的圆周角是直角的性质,等腰直角三角形的性质,正确作出辅助线解题是解题的关键3、 (1)见解析(2)2.4【解析】【分析】(1)过O作ODAB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案;(2)设圆O的半径为r,即OC=r,由得BC=3r,由勾股定理求得AD=,AB=3r+根据方程求解即可(1)如图所示:过O作ODAB交A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新小区物业承包合同示例
- 2024系统开发合同
- 2024年餐厅租赁合同模板
- 2024分期付款购买合同
- 文化节庆活动赞助协议
- 2025年会计专业考试高级会计实务试卷及解答参考
- 排水箱涵劳务分包合同2024年
- 城市管道天然气特许经营合同
- 抚养权变更协议模板2024年
- 协商一致解除劳动合同书样本
- 新苏教版五年级上册科学全册教学课件(2022年春整理)
- 小学体育水平一《走与游戏》教学设计
- 秋日私语(完整精确版)克莱德曼(原版)钢琴双手简谱 钢琴谱
- 办公室室内装修工程技术规范
- 盐酸安全知识培训
- 万盛关于成立医疗设备公司组建方案(参考模板)
- 消防安全巡查记录台帐(共2页)
- 科技特派员工作调研报告
- 中波广播发送系统概述
- 县疾控中心中层干部竞聘上岗实施方案
- 急性心肌梗死精美PPt完整版
评论
0/150
提交评论