版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、附件2四川农业大学大学生创新训练计划项目申报书项 目名称 基于多源遥感信息协同的森林火灾遥感监测研究以四川凉山州火灾为例项目负责人学 院资源学院联系电话申报日期 2020年06月01日四川农业大学制表填写说明申请书的各项内容要求实事求是,逐条认真填写。表达明确、严谨,一律要求用 打印稿件。申报书中各项内容用“小四”号仿宋体填写。如表格空间不足的,可以扩展。项目只能由全日制本科生提出申请。导师信息和导师意见二栏请不要填写。起止时间年 月至年 月负责人学号姓名年级所在学院、专业联系电话E-mail项4成员导 师姓名职称/职 务通讯地址电话E-mail项目名称基于多源遥感信息协同的森林火灾遥感监测研
2、究一、立项依据(项目意义、现状分析等)研究意义森林是生物圈的重要组成部分,广泛分布于陆地表面。林火是干扰森林生态系统的一 种主要因素,并已经成为全球范围内最为严重的自然灾害之一(Alkhatib等,2014)。 森林火灾具有破坏性强、突发性高、分布广等特点,不但会造成经济损失和人员伤亡, 还会导致森林资源减少、破坏生物多样性(Roy,2014)。此外由森林火灾造成的生物质 燃烧不仅是造成土地类型变化和气候变化的重要因素,而且是气溶胶和大气微量气体产 生的重要源头,生物质燃烧约占全球温室气体排放量的四分之一,产生的烟尘颗粒与来 源于工业和城市硫酸盐颗粒产量相当。近年来,森林火灾对人类、环境、野生
3、动物、生 态系统功能、天气和气候等产生巨大影响(Fernandez-Carrillo等,2019),引起了人 们的广泛关注。林火防治问题已成为世界范围内各界关注的热点话题。图1凉山州森林火灾实时、准确地监测森林火灾,是林火防治的重要组成部分,是有效控制森林火灾蔓 延,减小经济损失的重要手段。基于地面巡查、瞭望塔和视频监控监测等传统的林火监 测方式,需要花费大量的人力和物力。而遥感技术以其人力成本低、观测范围广,实时 性强的优点,在近半个世纪的时间里被广泛应用于森林火灾预警、实时监控和灾后评估 中,已成为当前森林火灾监测的重要手段之一(Alkhatib等,2014)。遥感极轨卫星和同步卫星均可用
4、于森林火灾监测。地球同步卫星具有实时性、探测 位置稳定的优点,在监测森林火灾中能够连续不断的获取火场的信息,这对于发现火情、 扑救森林火灾、降低灾害影响意义重大,理论上来说,使用同步卫星数据,可以有更多 的机会探测到短暂的火灾、火灾初期阶段、强烈的昼夜周期的火灾。实时探测,特别是 那些在初期阶段的火灾,可以使森林火灾和民防部门能够更好地管理其灭火行动,尽可 能减少扑灭处于第一阶段火灾所需的工具和人力资源的响应时间,但是同步卫星空间分 辨率偏低,对于小火点的探测能力与精度均存在不足。与地球同步卫星相比,极轨卫星 具有较高的空间分辨率,在小范围火情探测上具有优势,但极轨卫星重访周期长,时间 分辨率
5、低,在火情监测的时效性方面低于同步卫星(Xie等,2018),因此使用单一遥感 数据很难满足实际林火防治的应用需求,如何充分发挥不同遥感平台优势,提升森林火 灾遥感监测能力,是一个值得深入研究的问题。研究现状遥感探测森林火灾是通过不直接接触森林生物质,分析传感器探测到的发射、反射 的电磁波来判定火点的技术。表1森林火灾遥感监测典型卫星传感器卫星主要住慈幕彼段羌用征皿最高空倒分辨率&D刈幅rkmNOAAAHIKJI0.5KL2J51.127UUTf:m、AtiJ衣阳同步MOOTSCL4L4.436O.2J521305viLHIIii N PPvnas0.4L2 J0371:0vinn0.43L2
6、 3101.12800FY-3C城轨CL4 L25200.25linjawan.-B地洋同*aih L3.4165圆盘也注同安O.M13.616心151 盘FY-4地小同作gi0.+5l?.R141佛氐CF-4VNIE. MWIR0.454.15卜10.0540(1街样.Lanrkal-8K阳同步OU0431.390.015原IH-1B蜀H同生CCD.IRS0.+31254. 20.0-3TOO, 7M生物质燃烧产生的四种信号被太空中的传感器接收,分别为活火(光和热)、烟气、 火后的碳、植物结构的改变(火烧迹地),利用卫星遥感影像进行火灾监测的过程,就 是对这几种信号的分析提取过程。在遥感电磁
7、波谱中,对热信息敏感的红外波段是火灾 监测的主力波段。常用于火灾监测的卫星传感器如表1所示,可分为地球同步卫星和极轨 卫星两大类,下面分别对这两类卫星数据用于火灾遥感监测的研究现状进行介绍。(1)基于极轨卫星观测的森林火灾监测方法阈值法:通常来说,火点识别依据热辐射物理基础,在多波段遥感数据中根据维 恩位移定律选择火点和背景敏感的波段,在具体执行识别的时候,还需要一些经验的阈 值,以区分火点和其他地表。设定阈值的关键参量包括特定波段的亮温、反射率、波段 间亮温差异、火点指数等(李家国等,2010;郑伟,2020)。亚像元法:亚像元法指将一个像元简单的划分为火点和背景两个部分,利用物理 原理求解
8、火点的面积(Dozier,1981)。它基于这样的前提:如果一个像元的一部分比其 余部分更加温暖,较长的热红外波长温暖部分将在较短的热红外波长内按比例的增加辐 射。假设每个像元只有两个温度场,“目标”(火)温度和“背景”温度。结果表明, 所得到的非线性方程可以计算热的亚像元的面积。亚像元火点辐射功率计算的发展为高 强度小火点识别提供更加精细化的方法,同时还能提高过火面积的计算精度(Peterson 等,2013)。上下文法:上下文算法不在整个研究区域使用固定的阈值,而是计算背景像元的 变量。通过将火焰像元与其邻近的像元进行比较来做出判定火灾的决定。该算法是自适 应的,因此适用于不同时间、不同区
9、域的火点探测。该算法在世界上大多数地区都能成 功运行。结果表明,这种算法非常有效,减少了探测时间并且能够实现自动化。每个地 区,甚至每个生态系统都将有自己的具体的火灾特性。其特征是季节性的土壤和植被条 件所决定的,而上下文算法基于潜在火焰像元与其“背景”像元之间的对比度水平来识 别火焰像元(背景的定义根据内核大小而变化)。与固定阈值技术相反,必须对给定的 区域和季节进行定义,上下文算法在不同的环境条件下也是灵活有效的(Lee和Tag,1990; Giglio等,2016)。(2)基于静止卫星观测的森林火灾监测方法Bergh等(2005)提出了基于MSG卫星数据的多时相方法,这种方法使用了卡曼滤
10、波 和基于红外波段的天循环模型,卡曼滤波用来过滤观测的数据与估测观测和预测值的不 同分布,指出统计的显著性差异是潜在的火点造成的。结果表明,虽然目前与现在的MODIS 的火灾产品不能达到同一水平,但是比当前的阈值法和上下文法表现的更优越,这种新 的森林火灾探测算法比传统的上下文算法具有更高的检测精度。Xie等(2018)提出一种 时空上下文算法,该算法充分利用了 Himawari-8数据的时空和空间维度Prins等(1992, 1994)在AVHRR有关研究的基础上提出了基于火点亚像元辐射的GOES静止卫星遥感火点检 测技术方法。Menzel等(1996)系统地论述了基于GOES静止卫星多光谱
11、数据进行火点检 测及其生物燃烧气溶胶输送路径反演的技术方法。Prins等(1998)于1998年将亚像 元解析技术结合背景分析方法应用到GOES静止气象卫星热点监测中,首次形成了完整的 GOES WF-ABBA(Wild Fire Automated Biomass Burning Algorithm)火点识别算法,并利 用WFABBA算法获得的火点监测结果分析了南美和西半球火点时空分布特征。张鹏等(2016)对我国新一代静止气象卫星风云四号主用载荷AGRI与日本Himawari-8 /9 AHI传 感器进行了较为详细的对比分析。陈洁等(2017)分析了Himawari-8静止气象卫星火点 识
12、别方法,利用Himawari-8静止卫星进行了草原火的监测研究。新一代静止气象卫星高 密度观测数据可以极大改善森林火灾监测的时效性,实现森林火灾的实时跟踪监测。静 止卫星观测图像中太阳高度角差异巨大,在用极轨卫星火点算法(如 MODIS-MOD14-Day/Night算法)不能适用静止卫星传感器。(3)联合多源遥感的森林火灾监测方法使用单一卫星数据源很容易受到云雨等客观环境因素影响,降低监测的时效性。饶 月明等(2020)发展了一种多源卫星遥感数据联合火灾监测方法,充分挖掘高分四号高 时空分辨率和中红外火烧敏感波段优势,联合烟幕、温度和植被指数时序变化确定火烧 时间与位置;然后,使用Senti
13、nel-2数据监测不同火烧区域光谱信息;接着,使用 Sentinel-2数据提取dNBR (differenced Normalized Burn Ratio),提出了基于最大类 间方差法(OTSU)分步骤确定不同程度火烧迹地与面积的方法;最后,建立Sentinel-1A 极化比值PR (Polarization Ratio)和NDVI之间关系,利用微波雷达突破云雨限制。小结通过上述国内外研究现状的调研结果可知,地球同步卫星和极轨卫星观测均已广泛 应用于森林火灾监测中,但是地球同步卫星时间分辨率高而空间分辨率低,极轨卫星空 间分辨率高而时间分辨率低,使用单一卫星数据源很难同时满足火灾监测的时效
14、性和准 确性,如何联合多源遥感数据,构建高时空分辨率森林火灾监测方法是一项值得深入研 究的内容。研究目的本研究拟基于遥感数据融合方法,构建多源遥感数据协同的高时空分辨率森林火灾 监测方法,以期提高森林火灾遥感监测能力,为林火防治、林火应急响应提供技术支持。二、项目方案(具体方案、实施计划、可行性分析)研究思路与技术路线遥感数据在空间分辨率和时间分辨率上相互制约,单一的卫星传感器不能获得既具 有高空间分辨率又具有高时间分辨率的数据,遥感数据时空融合技术是目前解决此问题 的重要方法之一。本研究拟采用 FSDAF(Flexible Spatiotemporal Data Fusion Method)
15、 时空融合算法,融合极轨卫星SNPP/VIIRS、Terra/MODIS和静止卫星Himawari-8/AHI的用 于火灾监测的波段反射率和红外亮温。与单一传感器观测相比,得到的融合结果将具有 更高的时空分辨率。然后基于融合后的遥感影像,采用S NPP/VIIRS上下文火点检测算法, 对凉山州森林火灾进行火点检测及火灾蔓延过程监测,并对火灾监测结果的时效性和准 确性进行评价。整体技术路线如图1所示。极轨卫星地球同步卫星| SNPP/VIIRS Terra/MODISHinawari-8/AHI1 丁 I数据预处理大气校三、笔射定标,几和校正等I 融 Ii2019年3月30日凉山州采里县森林又灾
16、:I |2019年4月7日凉山州冕宁县嘉纭贝灾I 火点提取、m势蔓延分析图2技术路线研究方案数据介绍Terra/MODIS数据搭载在Terra卫星上的中分辨率成像光谱仪(MODIS),是美国地球观测系统(EOS) 计划中用于观测全球生物和物理过程的重要仪器。它具有36个中等分辨率水平 (0.25-1um)的光谱波段,每1-2天对地球表面观测一次,MODIS第1-2波段分辨率为250m, 3-7波段分辨率为500m,其他波段分辨率为1km。图3 Modis遥感卫星SNPP/VIIRS数据SNPP(Suomi National Polar-orbiting Partnership)卫星于2011
17、年10月 28 日升空执 行对地观测任务,共搭载可见光红外成像辐射计VIIRS、高级微波辐射计ATMS等5个遥感 传感器载荷。VIIRS设有22个波段(见表2),光谱范围为0.412um-12.01um,包括16个中等 分辨率波段,星下点空间分辨率为750m,5个影像分辨率波段,星下点空间分辨率为375m, 和一个全色波段。图4 VIIRS卫星表2 SNPP/VIIRS波段信息波段中心波 (jJ-in)波段皮度 (pm)波虻箍围 (|imj隅性国下点M0.4120.020.4C2 - 0.421可始.此?反射率M2aoia0.436-0-454M3O.f2l).47H - 0.4HM40.55
18、0.545 - 0.565M30.&72皿蜘 - 0-W51M60.7460.0150.739-0一734M7fl咿0.K46 -。一帝1.240a(i201.23 - L.25瑕液虹外M91.3780.0151371 I.3S6M10L61.0.06I.5S - L.f4Mil2250,052.23-2.28Ml 2.3.70*J83JSI -3.79中4外MI34_O50.1553.97-4-13MU0.3腥-Z堰红外M15ld.76?L0H.4 - JS.7M1612.01O.?51 1.54 - 12.49DNB - 0.9可史光J反射车顽米11(-MO.FKK16
19、- 0,68可虬扣反射率m米;O.8C5010390.85 -1X88近3:外131.6 J0.061.58- 1.64疤:波红外143.74OJB3.55-X93中红外1511.451.910.50- 12.40Himawari-8/AHI数据Himawari-8是新一代日本地球静止气象卫星,于2014年10月7日发射升空,具有极高 的时间分辨率,全球全盘观测只需要10分钟,携带先进的光学传感器AHI (高级海葵成像 仪),AHI的辐射、光谱、空间分辨率显著优于以往的地球同步卫星同类传感器。AHI有 16个观测通道,可见光和近红外波段的空间分辨率为0.5km或1 km,红外波段的空间分辨率
20、为2km。图4 himawari-8 卫星凉山州火灾案例选取凉山州是四川省三大重点林区之一,每年春夏季火灾频发,有如下原因。首先是气候因素:凉山州的森林主要覆盖于山区,这里的气候为典型季风型气候, 冬暖夏凉,干湿季分明。干季由9月底持续到次年4月。这段时期中,天气晴朗,日照 多,温度高,降水少,盛行偏南风,蒸发旺盛,气候十分干燥。林地干燥,降水量少, 容易着火。气候条件的不利使得该地区久旱不下雨,温度持续偏高。温度持续偏高时, 空气饱和差增大,水分解离,水汽蒸发加剧,土壤和各种植物成分变得干燥易燃。然后是地形特点:凉山州是四川省林火高发区,境内高差悬殊,地形起优剧烈。发 生在凉山境内的多属于山
21、林火灾,区域内地形地势多变,很大程度上控制着火势的蔓延, 在山势大转折的窄谷和山脊上,会出现自然终止燃烧的现象,但当山林火灾一旦爆发往 往是“火借风势,风助火威”,风在不同地形条件下对山林火的蔓延及火势的影响不同。 风供给火场新鲜空气,并形成气旋,造成:“飞火”,增加火源。火大时,会造成空气 密度不均匀,又会产生风或增强风势,形成局部小气候助长火势。另外火灾蔓延也受山 谷风的影响,且地形对山林火的蔓延及火势的影响很大。且由于当地的地形十分复杂, 山势陡峭,人口主要集中分布在地势较缓的河谷和三角洲,如果遇到自然,人为等过火 因素,林火极易发生。另外,可燃物是发生森林火灾的物质基础,还有许多人为因
22、素也不可忽视。大部分 林区住有群众,有烧荒烧垦、烧灰积肥、野炊、露宿等随便弄火的习惯,使得人为因素 也是凉山州火灾频发的原因之一。最后,山林火灾也有自然本身的原因,山林因雷电火,磷火自燃,滚石击起火花, 林木干枝的摩擦等自然火引起火灾。本研究选取近两年引起社会广泛关注的三起森林火灾作为研究案例。分别是2019年3 月30日凉山州木里县森林火灾,2019年4月7日凉山州冕宁县森林火灾,2020年3月30日凉 山州西昌市森林火灾。数据预处理几何精校正与影像配准引起影像几何变形一般分为两大类:系统性和非系统性。系统性一般有传感器本身 引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何
23、变形是不规 律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射 的变化以及地形的变化等。一般步骤如下:GCP (地面控制点)的选取、建立几何校正模 型、图像重采样。数字图像镶嵌与裁剪当研究区超出单幅遥感图像所覆盖的范围时,将两幅或多幅图像拼接起来形成一幅 或一系列覆盖全区的较大的图像。图像裁剪常用的是按照行政区划边界或自然区划边界 进行图像的分幅裁剪。过程分为两步:矢量栅格化和掩膜计算(Mask)。矢量栅格化将 面状矢量数据转化成二值栅格图像文件,文件像元大小与被裁剪图像一致;把二值图像 中的裁剪区域的值设为1,区域外取0值,与被裁剪图像做交集运算,计算所得图像是图
24、像裁剪结果。大气校正遥感图像在获取过程中,受到如大气吸收与散射、传感器定标、地形等因素的影响, 且它们会随时间的不同而有所差异。因此,在多时相遥感图像中,除了地物的变化会引 起图像中辐射值的变化外,不变的地物在不同时相图像中的辐射值也会有差异。利用多 时相遥感图像的光谱信息来检测地物变化状况的动态监测,其重要前提是要消除不变地 物的辐射值差异。辐射校正是消除非地物变化所造成的图像辐射值改变的有效方法,按照校正后的结 果可以分为2种,绝对辐射校正方法和相对辐射校正方法。绝对辐射校正方法是将遥感图 像的DN(Digital Number)值转换为真实地表反射率的方法,它需要获取影像过境时的地表 测
25、量数据,并考虑地形起伏等因素来校正大气和传感器的影响,因此这类方法一般都很 复杂,目前大多数遥感图像都无法满足上述条件。相对辐射校正是将一图像作为参考(或 基准)图像,调整另一图像的DN值,使得两时相影像上同名的地物具有相同的DN值,这 个过程也叫多时相遥感图像的光谱归一化。这样就可以通过分析不同时相遥感图像上的 辐射值差异来实现变化监测。因此,相对辐射校正就是要使相对稳定的同名地物的辐射值在不同时相遥感图像上一致,从而完成地物动态变化的遥感动态监测。(3)基于FSDAF算法的多源遥感数据融合遥感影像时空融合是在时间域和空间域进行的,利用高空间分辨率数据得到空间细 节信息,利用高时间分辨率数据
26、描述空间信息随时间的变化,通过对高空间低时间分辨 率影像和高时间低空间分辨率数据有效处理来“预测”目标日期的高空间分辨率影像, 即生成同时具有高空间分辨率与高时间分辨率特征的影像。本研究选用 FSDAF 方法(Zhu 等,2016)实现 SNPP/VIIRS、Terra/MODIS 和 Himawari-8/AHI影像的时空融合。该算法首先对t1时刻的高分数据进行分类,结合2期低 分辨率数据,计算每一地物覆盖类型的时间差异,然后利用每一地物覆盖类型时间差异, 预测t2时刻的高分影像,并计算低分数据像元残差,接着对t2时刻的低分数据使用薄板 样条插值函数预测对应时刻的高分数据,并将残差分配给预测
27、的高分影像,最后使用邻 域信息在移动窗口内赋予权重,融合生成t2时刻的高分数据。具体计算方法为:R (x , y , b) = R (x , y , b) + 切 w AR(x , y , b)high 2 ij ijhighl ij ijkk kk =1AR(x , y , b) = (x , y , b) + AR(a, b)high ij ijhigh ij ijhigh式中.R(x ,y ,b)为预测的七2时刻的高分影像 R(x ,y ,b)是七时刻的高分影像:high 2 ij ij,high1 ij ij叶,yk,b)是旦和t2时刻之间像元分辨率的变化值,为第k个相似像元的权重,A
28、Rfagh(a,b) 为t1和t2时刻之间高分影像中类别a在波段b中的改变量,high(十七,b)是第i个低分像元分 配给第j个高分像元的残差。TPS插值函数主要是指导残差分布,残差求解方法为:(x ,y ,b) = m(x ,y ,b) W(x ,y ,b)r P(x , y ,b) rP(x , y ,b)hg 2ijijhg 2ijijL j =1j =1highij iji iij ij (x , y , b) = AR(x , y , b)-i ilow i i mCW (x, y, b)= E(x, y , b) + (x, y , b)1 HI(x, y )ijijhoijijl
29、lijijE (x , y , b) = R sp (x , y , b) R tp (x , y , b)ho ijijhigh 2ijijhigh 2ij jR SP (x , y , b) = F (x , y )high 2ij ijTPS bij ij式中,m为低分像元中的亚像元个数,Rhigh2TP气,*,饥是由时间差异预测的t2时刻高分 数据像元值,Rhigh2S(七,yjb)是优化tps插值函数参数后预测的每个高分数据像元值,CW(x ,y,b)是指导分配残差的权重,W(x,y,b)是对CW(x,y,b)归一化之后的权重,hi为ij ij,ij ijij ij,同质系数,FTP
30、Sh(%,y.)为波段b的tps函数。屹时史高分辨,虻影像T2时刻料止星ti 时刻T2时刻世时刻(猊火)图5影像融合结果(4)基于SNPP/VIIRS上下文算法的凉山州火灾遥感监测通过FSDAF算法得到SNPP/VIIRS、Terra/MODIS和Himawari-8/AHI的融合影像后,我 们将使用SNPP/VIIRS上下文算法(Giglio等,2016),对选取的三起凉山州火灾案例进 行火点检测和火势蔓延分析。SNPP/VIIRS上下文算法是S NPP/VIIR S火点产品的业务算法,与其他较粗分辨率(约1 公里)的卫星火灾探测算法相比,该算法对较小的火灾的反应更灵敏,并提供了更可靠 的火
31、灾周界估计,非常适合用于支持火灾管理和近实时野火警报系统以及其他需要提高 火灾测绘保真度的科学应用。算法的主要步骤如下:排除影像中的不合理像元(如通道含有缺失值);云和水体的识别:夜晚:I5265K&I4295K白天:I50.9&BT50.7&BT5320K&QF4=0白天:I4=367K&QF4=0&I5290K&QF5=0&I1+I20.7其中,QF4和QF5为I4和I5通道的质量标识。背景火点识别夜晚:I4300K&(I4-I5)10K白天:I4335K&(I4-I5)30K避免无火的明亮目标I1+I20.6&I50.3&I3I2&I20.25&I4295K&(I4-I5)10K白天:I
32、4Min330,Max(325,M)K&(I4-I5)25K其中M是采样窗口中像元I4值上下文分析夜晚:(I4-I5)A+3 XB&(I4-I5)A+9&I4C+3 X D白天:(I4-I5)A+2XB&(I4-I5) A+10K&I4C+3.5XD&I5D+E-4|F5其中,A、B、C、D、E、F分别标识I4和I5亮温差值的均值、I4和I5亮温差值的平 均绝对偏差、I4亮温均值、I4亮温平均绝对偏差、I5亮温均值、I5亮温平均绝对偏差、 I4亮温数据在采集窗口的平均绝对偏差。虚假警报滤除:剔除沙漠边缘、高太阳反射的像元。以目视判识结果作为参考,评价本研究提出的多源遥感信息协同的森林火灾遥感监
33、 测方法的时效性和准确性实施计划2020年6月-2020年7月:完成数据下载和预处理;2020年8月-2020年12月:实现多源遥感数据融合算法、火点提取算法;2020年1月-2021年5月:完成结果分析与结题报告撰写,撰写期刊论文。可行性分析本项目参与人员均具备良好的地理信息科学相关专业基础,具备数据收集、处理、 编程和分析能力,项目方案可操作性强,工作进度安排合理,研究能达到预期目标,具 体说明如下:人员构成合理项目组成员专业技能扎实:均具有良好的地理信息系统和遥感专业基础,具备地理 信息系统软件操作和遥感图像处理能力,能使用C语言、C#语言进行算法编程。小组成员 分工明确,分工合理,根据
34、个人特长分派工作,黄国安主要负责遥感数据处理,主要负责代码编写和算法的具体实现,易立则负责结果评价、文档撰写、资料规整等。指导老师可提供专业指导指导老师具备长期的灾害遥感监测研究经验,可以在项目实施期间,为遥感数据处 理、数据时空融合、灾害监测等方面提供指导与建议,保障项目的顺利实施和完成。项目方案可行性强数据获取与处理过程不存在技术难点:研究所需的遥感影像均可免费下载获取,数据 预处理流程均非常成熟;图6 earthdata数据获取网站时空融合算法和火点提取算法的实现:两套算法均开源,可获取源代码,只需在源代 码的基础上,根据研究需要修改即可,项目组成员均有编程基础,因此算法部分编程 实现的
35、难度不大。test dataIA flexible spatiotemporal method for fusing imagFSDAF.pro*FSDAF_FAST.prDf)FSDAF_prec lassificatioriapro|FSDAFjprelassification_FAST-pro口三instruction of FSDAF.pptx图7算法代码工作进度安排合理项目组成员为地信专业学生,在项目执行期内时间,均在校学校,无校外兼职或实 习安排,因此可以全身心投入到该项目上,以保证项目按计划完成。三、预期研究成果(如鉴定、学术论文、获奖、申请专利、推广应用等)提出一种有效的森林火
36、灾遥感监测方法,发表1篇学术论文;本研究提出的火灾遥感监测方法有望通过模块集成,形成可视化软件,申请软件著作 权1项。参考文献Lee T F , Tag P M . Improved Detection of Hotspots using the A VHRR 3.7-um ChannelJ. Bulletin of the American Meteorological Society, 1990, 71(12):1722-1730.Roy, P S. Forest fire and degradation assessment using satellite remote sensing
37、and geographic information systemJ. 2004.doi:/Bergh F V D , Frost P E . A multi temporal approach to fire detection using MSG dataC. Analysis of Multi-Temporal Remote Sensing Images, 2005 International Workshop on the. IEEE, 2005.Alkhatib, Ahmad A A . A Review on Forest Fire Detection TechniquesJ. I
38、nternational Journal of Distributed Sensor Networks, 2014, 2014:1-12.Giglio L , Schroeder W , Justice C O . The collection 6 MODIS active fire detection algorithm and fire productsJ. Remote Sensing of Environment, 2016, 178:31-41.Peterson D, Wang J, Ichoku C, Hyer E and Ambrosia V. 2013. A subpixel-
39、based calculation of fire radiative power from MODIS observations:1: algorithm development and initial assessmentJ. Remote Sensing of Environment, 129: 262-279Fernandez-Carrillo A , Mccaw L , Tanase M A . Estimating prescribed fire impacts and post-fire tree survival in eucalyptus forests of Western
40、 Australia with L-band SAR dataJ. Remote Sensing of Environment, 2019, 224:133-144.李家国,顾行发,余涛.澳大利亚东南部森林山火 HJ卫星遥感监测J.北京航空航天大学学报,2010, 036(010):1221-1224.Xie Z , Song W , Ba R , et al. A Spatiotemporal Contextual Model for Forest Fire Detection Using Himawari-8 Satellite DataJ. Remote Sensing, 2018, 1
41、0(12).郑伟,陈洁,闫华,刘诚,唐世浩.FY-3D/MERSI-II全球火点监测产品及其应用J.遥感学报,2020,24(05):521-530.饶月明,王川,黄华国.联合多源遥感数据监测四川木里县森林火灾J.遥感学报,2019, 24(5).Zhu X L, Helmer E H, Gao F, et al.A flexible spatiotemporal method for fusing satellite images with different resolutionsJ.Remote Sensing of Environment,2016,172:165-177.Giglio L , Schroeder W , Justice C O . The collection 6 MODIS active fir
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 承包草地合同(2篇)
- 2025年度数据中心农民工用工合同4篇
- 二手房交易法律合同模板2024一
- 2025年度个人贷款合同风险评估与管理规范4篇
- 二零二五年度国际货物保险合同条款及理赔细则3篇
- 2025年度临时临时临时停车场租赁合同2篇
- 2025年度个人股权分割及转让合同3篇
- 个人与个人2024年度汽车租赁合同3篇
- 二零二五年度宁波劳动合同模板:包含员工劳动合同变更条款
- 二零二五年度外汇借款合同风险防范与应对策略
- 2024年资格考试-对外汉语教师资格证笔试参考题库含答案
- 软件研发安全管理制度
- 三位数除以两位数-竖式运算300题
- 寺院消防安全培训课件
- 比摩阻-管径-流量计算公式
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 五年级数学应用题100道
- 西方经济学(第二版)完整整套课件(马工程)
- 高三开学收心班会课件
- GB/T 33688-2017选煤磁选设备工艺效果评定方法
- 科技计划项目申报培训
评论
0/150
提交评论