数字信号处理英文版课件:Chap 2 Discrete-Time Signals in T-Domain_第1页
数字信号处理英文版课件:Chap 2 Discrete-Time Signals in T-Domain_第2页
数字信号处理英文版课件:Chap 2 Discrete-Time Signals in T-Domain_第3页
数字信号处理英文版课件:Chap 2 Discrete-Time Signals in T-Domain_第4页
数字信号处理英文版课件:Chap 2 Discrete-Time Signals in T-Domain_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 Chap 2 Discrete-Time Signals in T-Domain Discrete-Time Signals in the Time Domain Representation of sequences Operations on sequences; Classification of Sequences Typical SequencesDSP group 2007-chap2-ed12 2.1 Time-Domain Representation DT signals represented as sequences of numbers called samples.

2、 xn (n +, n is integer)Example A-1 x1= 0.2, x0 = 2.1, x1=1.1, Eg. DSP group 2007-chap2-ed13 2.1 Time-Domain Representation Graphical representation Sequence can be obtained by samplingP34xn= xa(t)|t=nT = xa(nT), n=,2, 1, 0, 1, 2, DSP group 2007-chap2-ed14 2.1 Time-Domain Representation sampling peri

3、od (Sampling interval) : T (sec) sampling frequency : FT = 1/T (Hz) (2.3) nth sample : xn= xa(nT) DSP group 2007-chap2-ed15 2.1.1 Length of a DT signal Finite-length sequence (Finite-duration sequence): xn=0, for nN2 . length: N = N2 N1 + 1 N-point sequence right-sided sequence: xn=0, for nN1 causal

4、 sequence: xn=0, for nN2 anticausal sequence: xn=0, for nN2 and N2 0 two-sided sequence: xn for n be positive and negative valuesDSP group 2007-chap2-ed16 2.1.1 Length of a DT signalP 37XXXDSP group 2007-chap2-ed17 2.1.2 Strength of a DT signal Lp -norm of a sequence xn: p= DSP group 2007-chap2-ed18

5、 2.1 Time-domain representation Examples Real sequence: if the nth sample xn is real for all values of n. Complex sequence: Complex conjugate sequence of xn : Sequence xn represented in simple form by ignoring the brace.DSP group 2007-chap2-ed19 2.1 Time-domain representation ExamplesExample A-2 rea

6、l sequence complex sequenceWhere Complex conjugate sequence DSP group 2007-chap2-ed110 2.1 Time-domain representation Examples Sampled-data signals: samples are continuous-valued . Digital signals: samples are discrete-valuedIn practical cases:Digital signals are obtained by quantizing the sample va

7、lues either by rounding or by truncation.Digital systems only deals with digital signals. DSP group 2007-chap2-ed111 ExamplesExample A-4 Finite-length sequence 8-point sequenceInfinite-length sequence two-sided sequence 12-point sequence zero-paddingDSP group 2007-chap2-ed112 ExamplesExample 2Right-

8、sided sequenceLeft-sided sequence0: causal sequence0: anticausal sequenceDSP group 2007-chap2-ed113 2.2 Operations on sequences 2.2.1 Elementary Operations:Discrete-Time SystemxnynInput sequenceOutput sequence Product (Modulation) operation: w1n= xn yn Modulatorxnynw1nwindowingDSP group 2007-chap2-e

9、d114 2.2 Operations on sequences Scalar multiplication operation : w2n= Axn Multiplier Addition operation: w3n= xn+ yn Adderxnynw3n Time-shifting operation: w4n= xn m Delayerz1xnw4n= xn 1xnAw2nDSP group 2007-chap2-ed115 2.2 Operations on sequences Time-reversal / folding : w6n= xn Branching: Used to

10、 provide multiple copies of a sequencexnxnxnDSP group 2007-chap2-ed116 2.2 Operations on sequences ExamplesP41 Example 2.2Two 5-point sequences: (0n4)Solution:DSP group 2007-chap2-ed117 2.2 Operations on sequences ExamplesExample 2.3Two sequences:Solution:Zero paddingP39 Example 2.1Ensemble Averagin

11、gDSP group 2007-chap2-ed118 2.2.3 Convolution Sum Convolution sum: Definition Commutative operation DSP group 2007-chap2-ed119 2.2.3 Convolution Sum distributive operation Interpretation of convolution sum1) time-reverse hk to hk associative operation DSP group 2007-chap2-ed120 2.2.3 Convolution Sum

12、2) time-shift hk to hnk3) product vk = xk hnk4) sum Schematic representation-nDSP group 2007-chap2-ed121 2.2.3 Convolution SumExample:Find DSP group 2007-chap2-ed122 Figures representation of ConvolutionDSP group 2007-chap2-ed123 2.2.3 Convolution Sum The result sequence of convolution of two finite

13、 -length sequences is also a finite sequence. If sequence yn is the convolution of N-point sequence xn and M-point sequence hn, then the length of yn is N+M1.DSP group 2007-chap2-ed124 2.2.3 Convolution Sum Generally, if then hkxkkkDSP group 2007-chap2-ed125 2.2.3 Convolution SumEx1 Suppl.:hn=an un,

14、 0a1, xn=un-un-N, determine yn=xn*hnN-1DSP group 2007-chap2-ed126 2.2.3 Convolution SumEx1 Suppl.:1) When n yn=0nkhn-kN-112DSP group 2007-chap2-ed127 2.2.3 Convolution SumEx1 Suppl.:2)When 3)when DSP group 2007-chap2-ed128 2.2.3 Convolution Sum Convolution computed by Multiplication -2 1 3 4 2 -4 2

15、6 8 3 -6 3 9 12 4 -8 4 12 16DSP group 2007-chap2-ed129 2.2.3 Convolution Sum Convolution computed by Multiplication Example: one 3-point and one 4-point sequenceSolution:8 12 166 9 122 3 44 6 8 4 4 1 21 24 16 2 3 4) 2 1 3 4DSP group 2007-chap2-ed130 2.2.4 Sampling Rate Alteration Sampling rate alter

16、ation ratio is R = FT / FT If R 1, the process called interpolation, or called upsampling; If R 1, the process called decimation. or called downsampling L Mxn=xa(nT)FT=1/TP46 Eq. 2.23, 2.24P47 Fig 2.14.DSP group 2007 chap5-ed1312.3.1 Circular shift of a sequence1. Consider length-N sequences defined

17、 for 0nN1 2. i.e. xn=0, for n 0 (right circular shift), the above equation implies 2.3.1 Circular shift of a sequenceWhere: if r = m +l N, and 0m N1, then moduloDSP group 2007 chap5-ed1337. Illustration of the concept of a circular shift 2.3.1 Circular shift of a sequence exampleDSP group 2007 chap5

18、-ed1348. As can be seen from the previous figure, a right circular shift by n0 is equivalent to a left circular shift by N n0 sample periods;9. A circular shift by an integer number greater than N is equivalent to a circular shift by n0 N. 2.3.1 Circular shift of a sequence comments on the example10

19、. Circular shift can be realized by extend the sequence periodically as xn+mN first, and then shift, or vice versa, and at last get the sample for 0nN1.DSP group 2007 chap5-ed135xn-1xnx4 2.3.1 Circular shift of a sequence example1 xn+4m,DSP group 2007 chap5-ed136 2.3.1 Circular shift of a sequence s

20、tepsStep1: time-shifting;Step2: N-point period extension; Step3: get the principle; DSP group 2007 chap5-ed137 2.3.2 Circular time-reversal of a sequenceP48 Figure. 2.15DSP group 2007-chap2-ed138 2.3.3 Classification of SequencesClassification based on symmetry for real sequence: even sequence ( xev

21、n) Conjugate-symmetric sequence xcsn : xn= x*nFig. 2.18 (a) An even sequenceDSP group 2007-chap2-ed139 2.3.3 Classification of Sequences for real sequence: odd sequence ( xodn) Conjugate-antisymmetric sequence xcan : xn= x*n xn= xcsn+ xcan (2.27) Fig. 2.18 (b) An odd sequenceDSP group 2007-chap2-ed1

22、40 2.3.3 Classification of SequencesExample 2.8Solution:DSP group 2007-chap2-ed141 2.3.3 Classification of Sequences even and odd sequence xn= xevn+ xodn (2.29) DSP group 2007-chap2-ed142 2.3.3 Classification of Sequences based on periodicity Periodic sequence : fundamental Period : NN minimum posit

23、ive integerPeriod: N=7Aperiodic sequenceDSP group 2007-chap2-ed143 2.3.3 Classification of Sequences average power : energy of sequence : Example: 2.10 Not energy signal Power signalDSP group 2007-chap2-ed144 2.3.3 Classification of Sequences bounded sequence : N-periodic extension : DSP group 2007-

24、chap2-ed145 2.4 Typical Sequences and Sequence Representation2.4.1 Some basic sequences Unit sample(impulse) sequence: Unit step sequence: x=zeros(1,N);x(1)=1Plot(x)ones(1,N)46 2.4.1 Some basic sequences Sinusoidal sequence: Angular frequency: 0 Amplitude: A Phase: DSP group 2007-chap2-ed147 2.4.1 Some basic sequences Exponential sequence: A and are real or complex numbers LetReal partImaginary partDSP group 2007-chap2-ed148 2.4.1 Some basic sequence ExampleExample: Fig.2.23 DSP group 2007-chap2-ed149Real exponential sequence xn=A n, n where A and are real

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论