版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、城市污水污泥掺烧的研究1引言随着污水排放标准的日趋严格及污水处理设施的不断发展,污泥的产量大幅增加的同时,浓缩在其中的重金属、致病微生物及难降解的有机物等有毒有害物质的种类和数量也急剧增加据统计,2015年中国城市污水污泥的年产量超过3000X104t,这些污泥的成分复杂、含水率高、不稳定且较易腐化,急需进行有效的处理处置与卫生填埋、用作农肥、热解等传统的污泥处理处置方法相比,焚烧法具有减量化、无害化、快速化且可回收能源等优点而具有广阔的应用前景,其处理方式包括单独焚烧和掺烧我国环保部出台的城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)(2010年)及污水处理厂污泥处理处置最佳可行
2、技术导则(征求意见稿)(2008年)中明确把污泥焚烧作为我国污泥处理处置最佳可行技术之一,但目前各类机械脫水后污泥具有高水分、高灰分、高粘度、低热值的特点,导致污泥单独焚烧具有焚烧不彻底、挥发分不易析出等缺点,因此,急需开展污泥的掺烧实验研究.为了获得污泥掺烧过程的燃烧特性,国内外学者多采用热重分析法对不同来源、不同混合比污泥及其与生物质的混燃特性进行研究刘敬勇和孙水裕研究表明不同来源的污泥燃烧性能与污水处理厂水处理工艺、污泥种类及其理化性质有关;李洋洋等指出煤中加入一定比例干污泥后可以改善其着火性能;廖艳芬等指出生物质脫灰后其着火性能明显改善;宁寻安等研究表明印染污泥和木屑混燃后其综合燃烧特
3、性指数增大;Xie和Ma发现造纸污泥掺烧秸秆可以改善其燃烧性能可见,污泥中掺烧生物质可以改善污泥的燃烧性能在众多的生物质中,咖啡渣含有脂肪酸、木质素、纤维素和半纤维素等有机物.目前,全世界每年咖啡渣产量约600X104t,其研究主要集中于提炼生物柴油、提取甘露聚糖和聚瓮基脂肪酸、制备生物质活性炭等资源综合利用方面.由于咖啡渣中生物油含量高达15%,因此其被视为新一代极具潜力的生物质能源前期已有研究表明咖啡渣具有灰分低、有机质含量高、热值高等特点,且咖啡渣的固定碳燃烧较松木和无烟煤容易但是,目前咖啡渣用来燃烧或掺烧获得能源的研究却鲜见报道.基于此,本文选取污泥及掺烧物料咖啡渣为研究对象,进行两者
4、之间的混燃实验,重点探讨不同升温速率、不同混合比以及不同气氛条件下污泥与咖啡渣的单一样及其混合试样的燃烧特性,计算了其混燃的各类综合燃烧特性指数,并采用Coats-Redfern积分法进行燃烧动力学关键参数求解,建立其燃烧动力学模型,研究结果可为污泥与生物质混烧工艺设计及掺烧工况运行提供指导,同时为咖啡渣的有效处理处置及协同处理提供新的思路.2材料与方法2.1试样本文所采用的咖啡渣取自广州市某速溶咖啡加工厂,污泥为广州市某大型污水处理厂的终端脫水污泥,取回的样品放在阴凉通风处晾干后用破碎机破碎,然后经过玛瑙研钵研磨、筛分,使粒径小于200目.筛分后样品采用恒温烘干箱在105C下干燥24h.混合
5、样为污泥、咖啡渣按照4种不同比例混合而成,其中咖啡渣在混合样中的质量分数分别为10%、20%、30%、40%.试样的工业分析采用GB/T287312012固体生物质燃料工业分析方法,样品的元素分析和工业分析结果见表1.表1污泥和咖啡渣的元素分析和工业分析样品元素分析工业分析C翻Hadn33SadClanA飢34.04%5.027%23.432%6.005%1.611%0.4969%5.50%4830%43.33%2.32%咖啡(SCG)46.62%8.870%23.900%5.640%0.940%-6.93%64.94%7.05%21.02%注:恥诙水分:叭诙挥发另;甩诙嫌分;FCaflj固走
6、碳闫。为空气干燥基.2.2实验装置热重实验装置采用德国生产的热综合分析仪(NETZSCHSimultaneousThermalAnalyzerSTA409PCLuxx),可获得试样的TG及DTG曲线,其主要技术指标如下:测量温度范围为室温至1400C;最大试样量:1000mg;热天平精度为1Mg;升温速率为020C-min-1;实验气氛为空气、富氧气氛(V02:VC02=2:8).2.3实验条件样品研磨至粒度小于200目,然后按照要求进行充分混合.实验温度范围为251000C,以3种升温速率(10、15、20Cmin-1)进行升温,燃烧气氛为空气气氛及富氧气氛(V(O2):V(N2)=2:8)
7、,载气流量为50mLmin-1.每次取试样质量为(100.5)mg为了减小实验误差,每次热重实验都需扣除空白影响,并在同批次样品中抽取1个样品进行3次重复实验以进行数据监控.3结果与讨论3.1燃烧特性曲线分析3.1.1污泥及咖啡渣单一样品的热重曲线分析从图1a可以看出,污泥燃烧过程中的失重主要分为3个阶段:第一阶段为水分蒸发阶段(30185C),占总失重的9.32%,主要是污泥中结合水的析出;第二阶段为挥发分的析出和燃烧(185401C),占总失重的47.24%,主要是由于污泥中易挥发分及可降解有机物等物质的析出和燃烧过程,该阶段DTG曲线存在一个明显的失重峰,并当温度330C存在一个明显的侧
8、峰呈现这种侧峰现象的原因应该是污泥中所含挥发分化学键的强弱不一导致燃烧的难易程度的不同第三阶段为挥发分和固定碳的燃尽(401636C),占总失重的40.49%,此时易挥发性组分以及可降解有机物燃烧基本完成,难挥发性组分开始析出燃烧,同时炉内的氧气缓慢渗透到达固定碳表面,固定碳开始燃烧,直至难挥发分分解完成,炉内氧气充分与固定碳表面接触,固定碳开始迅速燃烧并燃尽由图1b可知,咖啡渣的TG-DTG曲线与污泥相比有明显区别,主要分为2个阶段,第一阶段为挥发分的析出与燃烧(200340C),即主挥发分析出区,该阶段失重率高,占总失重的55.79%,其失重峰对应的温度为300.2C,主要是半纤维素的分解
9、;第二阶段为挥发分的燃尽与固定碳的燃烧(410465C),占总失重的27.08%第二失重峰对应的温度为428.8C,主要是纤维素燃烧与焦炭化.图1升温速率为20Cmin-1时单一污泥和咖啡渣燃烧的TG和DTG曲线(a.污泥;b.咖啡渣)对比图1中a、b可以看出,咖啡渣的挥发分及固定碳燃烧两个阶段的失重速率峰值都比污泥大,并且两个失重峰对应的温度区间、最终剩余质量百分数都明显比污泥小,这说明与污泥相比,咖啡渣燃烧过程中其挥发分的释放及燃烧更加集中,且咖啡渣燃烧更彻底更充分主要原因可能是咖啡渣的主要可燃成分为油脂、纤维素、木质素等成分,且有机质含量高,灰分含量远低于污泥另外,根据图1中TG和DTG
10、曲线确定污泥和咖啡渣的着火温度和燃尽温度(试样失重占总失重的98%时对应的温度),求得污泥的着火温度和燃尽温度分别为236.0C和630.1C,咖啡渣的着火温度和燃尽温度分别为283.1C和481.2C.污泥的燃尽温度比咖啡渣高148.9C,说明污泥相比咖啡渣含有较难燃尽的物质由表1工业分析可知,咖啡渣的灰分含量比污泥低,挥发分含量比污泥高,但污泥的着火温度却比咖啡渣的低47.1C,主要原因是污泥主要成分为低级的有机物,其结构简单且经过生物氧化后在高温下易分解.3.1.2不同升温速率条件下污泥及咖啡渣单一样品的热重曲线分析图2为单一污泥和咖啡渣试样在空气气氛下,升温速率分别为10、15和20C
11、min-1的燃烧曲线由图1a可知,随着升温速率的升高,污泥的DTG曲线向高温区偏移,峰值增大,燃烧区间变宽,燃烧失重速率变大,达到相同失重所需时间减少结合表2可知,升温速率由10Cniin-1增加到20CiminT,污泥的燃尽时间由59.0min缩短至31.3min,并且达到最大失重速率所需时间和着火时间分别减少12.3min和9.3min.这主要是因为升温速率的提高,一方面使试样燃烧反应时间减少,反应变得更加剧烈;另一方面试样内外层温度差别增大,传热传质受到限制,导致DTG曲线向高温区偏移.mmmr.000150100-a80%60%40%20%07EW-%)3J.a-10tmm1亠I59m
12、in-209min110200T-5OOF/V10020030040050060070080090(TCC图2不同升温速率下污泥和咖啡渣的TG和DTG曲线(a.污泥;b.咖啡渣)表2不同升温速率下污泥和咖啡渣的燃烧特征特性参数护样7/C(%加10232.0603.61.930.625115237.962432.920.9142023S.463013.971.243咖啡渣(SCG)10299.3445.325.731.214:15297.0453.333.681.842!20300.24S1.241.242.482:W为升温速率瑞伪馆值温度谢燃尽温度;阳血m伪最犬燃烧速率他咖M)彌伪平均燃烧速率
13、垃站燃尽时间:t腐着狰间由图2b可以看出,不同升温速率下咖啡渣的DTG曲线比较接近比较TG曲线最终走向,不同升温速率对最终残留率的影响很小,当升温速率为10Cmin-1时,试样的最终剩余质量百分数与15、20Cmin-1时相比,仅相差约0.6%,而对燃尽时间影响较大.结合表2可知,咖啡渣的峰值温度随着升温速率的升高而升高,整个分解过程随着升温速率的升高而延迟,主要是热传递限制和动力学作用的结果升温速率为20Cmin-1时咖啡渣的燃尽时间比10Cmin-1时缩短19min.这主要是因为升温速率越高,反应进行得越快,试样达到燃烧温度所需的时间变短另外,当升温速率增加,颗粒与颗粒之间、颗粒内外层之间
14、传热温差与温度梯度均受到影响,颗粒内外温差变大,释放出的挥发分扩散受阻,影响燃烧的进行,部分可燃质需在更高的温度下逸出,并且反应温度、挥发分的析出和氧气的扩散浓度等因素的作用又导致了燃烧过程的不同.3.1.3污泥与咖啡渣混合样品的热重曲线分析在空气气氛、升温速率为20Cmin-1的条件下,污泥中加入不同比例(10%、20%、30%、40%)的咖啡渣后混合样品的热重曲线见图3由图3可知,随着咖啡渣掺烧比的增加,混合物的燃烧特征曲线呈现出由污泥向咖啡渣变化的趋势混合试样的TG曲线在185390C温度区间存在一个明显的失重区域,DTG曲线的最大失重速率随着咖啡渣混合比例的增加而增大,且污泥与咖啡渣混
15、烧的最大失重速率比单一污泥时高,比单一咖啡渣时低,这说明污泥中掺烧咖啡渣提高了污泥的最大失重速率,使混合试样的挥发分析出和燃烧阶段更剧烈,其原因应该是当污泥中掺烧咖啡渣时,混合试样的挥发分含量高于单一污泥试样的挥发分含量随着咖啡渣混合比例的增加,混烧试样的第2个失重速率峰也随之增大,且其第2失重峰对应的温度有所提前,这应该是因为污泥中掺烧咖啡渣能使污泥中挥发分的燃烧反应速率增快,从而促使污泥中的难燃有机物提前与空气中的氧气混合燃烧图3污泥与咖啡渣混燃的TG和DTG曲线(a.污泥;b.咖啡渣)根据表3可知,污泥中掺烧咖啡渣时,混合试样的着火温度随着咖啡渣掺烧比例的增加而增加,以掺烧比为40%为例
16、,分别比30%、20%、10%升高了9.1、17.0、29.0C,比单一污泥样升高35C,这是由于污泥中的可燃基挥发性组分与咖啡渣中的挥发分成分有所不同,污泥中挥发分与咖啡渣中挥发分相比,能在更低的温度下着火燃烧当咖啡渣掺烧比为10%、20%、30%、40%时,对应的燃尽温度分别为612.9、593.0、587.3、570.0C,混合试样的燃尽温度比单一污泥样大、比单一咖啡渣试样小,且咖啡渣掺烧比由10%增加到40%时,混合物的燃尽时间由30.5min缩短到28.3min,小于单一污泥样的燃尽时间,表明在污泥中添加咖啡渣有利于改善污泥的燃尽性能.表3升温速率为20Cmin-1时试样的特性参数试
17、样7/C7/C7m3/Cdss236.0630.12S3.4SCG2S314S1.2300.260%SS+40%SCG271.0570.0310270%SS+30%SCG261.9537.3311.1S0%SS+20%SCG254.0593.D307.290%SS+10%SCG242.0612.9309.270%SS+30%SCG20%O2-80%CO)261.9596.6312.9注歼为着尖温度;谢燃尽温度肝瞎功慷温;(tWMUx为最犬燃烧谨率;畑汕曲鳩伪平均燃烧速率诙燃尽时间;茁烧3.1.4不同气氛对比分析本文选取升温速率为20Cmin-1、污泥与咖啡渣混合比例为7:3时,在空气(V(02
18、):V(N2)=2:8)和02/C02(V(02):V(C02)=2:8)两种不同气氛下进行热重实验,所得TG-DTG曲线如图4所示,以对比分析混合试样在两种不同气氛下的燃烧特性.从图4可以看出,相对于空气(02/N2)气氛来讲,试样在O2/CO2燃烧气氛中,其燃烧的TG和DTG曲线向高温偏移,试样最终剩余质量百分数变大,且峰高变小结合表3可知,试样在O2/CO2气氛下燃烧时的燃尽温度比O2/N2时高9.3C.当混合物分别在02/C02、O2/N2气氛中燃烧时,其对应的最大失重速率为7.89%min-1、8.87%min-1,与空气气氛相比,试样在O2/CO2气氛中燃烧时的最大失重速率变小而燃
19、尽时间变长说明与O2/N2气氛相比,O2/CO2气氛对混合试样燃烧反应有一定的抑制作用,这是由于与N2相比,CO2具有更高的密度和比热容(Riazaetal.,2012).图4不同气氛下污泥与咖啡渣混燃的TG和DTG曲线(a.污泥;b.咖啡渣)3.2燃烧特征指数计算及分析3.2.1挥发分释放特性指数D在试样的燃烧过程中,挥发分的析出直接影响试样的着火温度,所以,本文通过计算挥发分释放特性指数D对试样燃烧过程中挥发分的析出情况进行分析其表达式见方程(1),数据计算结果见表4.=()/TxT心neiuiixmax1l/z*dr(1)表4试样的特性参数试样甲办旳DCCt.SSS1014.283.81
20、.7338.0892.0125.94S1512.385.72.5o311.5442.57511.7532014.084.03.31915.0653.74S20.40&SCG1020.477.629.1S05.623.589149.6911515.5S2.537.399111.4924.332287.3752014.883.245.154136.0805.146456.578SS6D%+SCG40%2019.079.011.81540.0055.29000.933SS7D%+SCG3TO2017.980.1S.45S30.SOS4.91754.944SSSD%+SCG20%2017.081.16
21、.53125.854.65645.061SS9D%+SCG10%2014.683.44.5o119.9224.00631.126SS7D%+SCG3D%(0Z20%+C0280%)2017.280.37.53327.6584.68649.412式中,(dw/dT)max为最大燃烧速率(mgmin-1),即挥发分最大释放速度峰值;Tmax为峰值温度(K);T1/2为(dw/dT)/(dw/dT)max=1/2对应的温度区间,即半峰宽温度(C).根据表4可知,以升温速率20Cmin-1为例,单一污泥试样的挥发分释放特性指数D为1.733X10-9mgmin-1K-3,比咖啡渣的挥发分释放特性指数低
22、了一个数量级.升温速率由10Cmin-1提高到20CminT,污泥的D值由1.733X10-9mgmin-1K-3增加到3.319X10-9mgmin-1K-3,咖啡渣的D值由2.918X10-8增加到4.515X10-8mgmin-1K-3,说明适当提高升温速率有助于挥发分的析出.当污泥与咖啡渣混烧时,混合试样的D值比单一污泥试样低,比单一咖啡渣试样高,并随着咖啡渣掺烧比例的增加而增加另外,试样在空气(02/N2)气氛中的D值比在02/C02气氛中大因此,在空气气氛中,污泥中掺加一定比例的咖啡渣有利于改善污泥的燃烧性能3.2.2可燃性指数C另外,为更进一步评价试样的燃烧稳定性情况,引入可燃性
23、指数C来表征试样的整体燃烧特性,其表达式见方程(2),数据计算结果见表4.(2)由表4可以看出,污泥的可燃性指数C在&089X10-715.065X10-7mgmin-1K-2之间,而咖啡渣的可燃性指数在&562X10-613.609X10-6mgmin-1K-2之间,比污泥的C值(10-7)高一个数量级,这表明咖啡渣的燃烧着火稳定性能优于污泥.随着升温速率的提高,单一污泥和咖啡渣试样的C值都呈上升的趋势在混燃试样中,当咖啡渣掺烧比例由10%增加到40%时,混合试样的可燃性指数由1.992X10-6mgmin-1K-2增加到4.001X10-6mgmin-1K-2,且当N2代替CO2时,C值由
24、2.766X10-6mgmin-1K-2增加3.051X10-6mgmin-1K-2,所以,污泥与咖啡渣在空气气氛中混燃时可以提高燃料的可燃性,使其着火性能更加稳定.3.2.3燃尽指数Cb燃尽特性是表征可燃物燃烧性能的一个重要指标本文引入燃尽指数Cb来描述试样的燃尽特性,其表达式见方程(3),Cb的计算数据见表4.(3)式中,f1为TG曲线上着火点对应的试样失重量与试样中可燃质含量的比值;将试样燃烧失重从开始到燃烧98%可燃质的时间定义为燃尽时间T0,T0时刻所对应的试样失重量与试样中可燃质含量的比值定义为总燃尽率f,则后期燃尽率f2=f-f1其中,f1反映了挥发分相对含量、试样着火特性的影响
25、,f1越大,试样可燃性越佳;f2反映了试样中碳的燃尽性能,与含碳量、碳的存在形态等特性有关,f2越大,试样的燃尽性能越佳,Cb计算数据见表4.从表4可以看出,单一污泥和咖啡渣试样的燃尽指数Cb都随着升温速率的增加而增大,表明适当升温有利于试样的燃尽,改善燃料的燃尽性能当污泥和咖啡渣混烧时,随着咖啡渣掺烧比例的增加,混合试样的Cb值呈上升的趋势.升温速率同为20Cmin-1时,污泥和咖啡渣的Cb值分别为3.748X10-3min-1和5.146X10-3min-1,而当咖啡渣混合比例为40%时,混合试样的Cb值为5.298X10-3min-1,其数值并不是两者Cb值的简单叠加,且高于污泥和咖啡渣
26、单一试样的Cb值,说明污泥与咖啡渣混燃时存在协同作用,这可能与污泥和咖啡渣本身成分之间的耦合及污泥中碱土金属的催化作用有关另外,混合试样在O2/CO2气氛中燃烧时的Cb值小于在O2/N2气氛中,说明O2/CO2气氛不利于燃料的燃尽.3.2.4综合燃烧特性指数S为综合评价试样的燃烧情况,引入更具代表性的综合燃烧特性指数S来表征试样的整体燃烧特性,其表达式见方程(4),S的计算数据见表4.(血/如心X二町h(4)式中,(dw/dT)max为最大燃烧速率(mgminT);(dw/dT)mean为平均燃烧速率(mgmin-1),其值越大,表明燃尽越快;Ti为着火温度(K),其值表明污泥中挥发分析出的难
27、易程度;Th为燃尽温度(K),定义为试样失重占总失重98%时对应的温度.由表4可知,以升温速率20Cmin-1为例,单一污泥试样的综合燃烧特性指数S为20.406X10-11mg2in-2-3,比咖啡渣的S值低了一个数量级.升温速率由10Cin-1提高到20Cmin-1,污泥的S值由5.948X10-11mg2min-2K-3增加到20.406X10-11mg2min-2K-3,咖啡渣的S值由149.691X10-11mg2min-2K-3增加到456.578X10-11mgmin-1K-3,说明试样在较高的升温速率下具有良好的综合燃烧特性污泥与咖啡渣混烧时,混合试样的S值随着咖啡渣掺烧比例的
28、增加而增大.因此,咖啡渣的加入改善了污泥的燃烧性能,且混合样的燃烧特性随着咖啡渣混合比的增加而变佳在O2/CO2气氛下燃烧时的S值比在空气气氛(O2/N2)时小5.532X10-11mg2min-2K-3,说明O2/CO2气氛抑制混合试样的燃烧.3.3燃烧动力学方程求解为了描述污泥与咖啡渣混燃时的动力学过程,引入Coats-Redfern积分法对试样的燃烧动力学参数进行求解,并通过分析污泥与咖啡渣混燃时所需的活化能为工程实际应用提供一个合适的混合比例.污泥与咖啡渣的燃烧动力学反应方程式为式中,a为转化率,a=(mO-m)/(mO-ms),m代表试样的质量,下标0与分别表示反应初始与最终状态;E
29、为活化能Jmol-l);R为理想气体常数,8.314Jmol-1K-1;t、T和A分别为反应进行到a时对应的时间、温度和频率因子(min-1);f(a)为与燃烧机理相关的函数.经过整理得到:InInAEJpE2RT7(n=1)In式中,Q为升温速率(Cmin-1),Q=dT/dt;n为反应级数,令,因为1,1-2ar宀1,a的值近似看做常数,令1-(1-a)lN-(1)*y=In(n=I)tA=E,则有Y=a+bX,由上式作图求出该直线的斜率,进而通过斜率可求出活化能E,截距中包含频率因子A.假设试样由3部分物质(即易挥发分、难挥发分和固定碳)组成,从污泥、咖啡渣及其混合物燃烧的宏观动力学角度
30、,把失重过程的各个阶段看成是独立、连续、平行的反应,各部分物质在升温过程中单独进行反应(温俊明等,2004).在整理实验数据时发现,无论是单步反应还是多步反应,在每步反应中,第一阶段DTG峰值两侧的反应机理不同以污泥在升温速率为10Cmin-1时燃烧为例,分别在不同的反应机理下将各个阶段峰前后的横纵坐标数据代入后进行数据拟合(n分别取0.5、1.0、1.5、2.0),拟合结果见图5,比较不同反应机理的可决系数R2值的大小从而确定燃烧动力学方程和活化能E.图5污泥在升温速率为10Cmin-1时挥发分第一失重峰的燃烧动力学拟合曲线在燃烧动力学参数中,活化能是一个非常重要的参数,是指化学反应中,反应
31、物分子由初始稳定状态变为活化分子所需的最小能量,它比着火温度更能从本质上描述试样的着火性能按照上述方法可得,试样在挥发分1峰前取反应级数n=0.5,用f(a)=(1-a)0.5来描述该阶段较为合理,而其峰后以及挥发分和固定碳燃尽阶段的整个失重峰一般取n=2,用f(a)=(1-a)2来描述其反应机理较为合适.各阶段拟合方程所得可决系数的平方值在0.965以上,说明由此确定的反应级数较为合理.其中,试样各个阶段拟合方程和所求动力学参数见表5由表5可知,试样的活化能随着燃烧进程的深入而增大,在固定碳燃烧阶段,污泥、咖啡渣及其混合试样的活化能均较高,说明固定碳的燃烧需要较高的温度.表5试样燃烧时的动力
32、学参数zeziSZZ606L9ZN吠细心A269Q(H6卑9O6Z6VCZ36&0CfigOSS90C-=AZ60W-E-88CStroe02816981L08606空66%乙曲乙乙臥90E88S9P8Lba0乙EZSVEZEOL6P6&0Z29VWXZV3k=Z乙009-00986Z8Z0OU6-0忆陀做Z04A乙0OA666Lf6Z609乙1660146上X9號戊PZ666E-6783当tr6K600Zzzzr99860OUOkXP工17二人906Z?Z-89Zk916E7L6VOl0&660898WX9C92L-=/乙OOL9-CZ8U訓ZE豈茸IrZt?9VEE0996088999-X
33、r0t-=Z乙Z68ZZZ7Z煦660HW28ZZC-=A29S8E-618Z当訓甫躺9561002186960ZEZOl-O9t0Z-=A906LZ-V69L01SSG(L凰.叫n)raTjouu-n)IB0ud)Mlfe.s爲忖OL.gcULcog62zsE.9C9C09Z82ZBG2Z0M872txoge9Z966.0C.n寸0006.0c6686.0爲菽o乂8卜寸CNr乂CZ666OgoscgxuzgT世Go5叫Z6.ZLedogzsLL?6S孚Le&Logg308PE6656.0SOOZ/g十xtwv岀c602.6目ils06C6二69寸C28460寸gs.g乂psgT丈0寸.662
34、OR8zrJee606E0寸+XZOC0T乂20gegt6gLg96.9寸62Z9pe5660go89czcdgE6.0gg60EGgzdpbgo*义rjs-s98eyov00寸cteooeSS7O至十SCG30WdR建dR燔St題2o5272g17838X*!1.631041595832y卩4785.7X5.67730.98760(07580g70g0(09710.9855o.ggco亠0(077923s38644严58148.312严6930,2739.7927.2244.4922厶4IS60525259941.6522461Q52db500.3580217543话091600gg76-45CO5435SS856十SCG2sa80930720.5YJ2387.9X968860.968920.332625300.91DnIn十SCG0宦307.2,388.02YU3328.9E7.48390.9920276823503gco?50g72齐,3982.5MOo2706076618.53255737CO0309.2-393.0揮发分创呈前393.0-511.3揮发分创蚩后y=-3142.6?f-7.86720983526.U22.29y=-3830.9C-7.12130.970431.8&25.26V=-15967X-8.61220.9950132.7514.4622511
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文书模板-新型智慧城市运行中心建设情况报告
- 元素与物质分类-2023年中考化学一轮复习(解析版)
- 济宁2024年统编版小学6年级上册英语第三单元真题
- 2024-2025学年江苏省镇江某中学高二(上)月考物理试卷(10月)(含答案)
- DB4107T 501-2024 知识产权保护中心服务规范 一般要求
- 五年级科学下册期末试题分类汇编:地表缓慢变化
- 2024年锅炉自控优化装置项目投资申请报告代可行性研究报告
- 2024年安全员C证考试100题及解析
- 纤维增强复合材料防眩格栅技术规范(征求意见稿)
- 幼儿园年终工作述职报告范文(30篇)
- 5 新走近我们的老师 第一课时(教学设计)-部编版道德与法治三年级上册
- Unit 11 Trees (Period 1)(教学设计)-2024-2025学年沪教牛津版(深圳用)英语六年级上册
- 2024年汽车行业社媒营销趋势分析报告
- 国画课程设计报告
- 2024年四川省专利审查协作中心招聘笔高频考题难、易错点模拟试题(共500题)附带答案详解
- 竹子主题活动课程设计
- QC/T 242-2024汽车车轮静不平衡量要求及检测方法
- 肌肉注射操作并发症的预防及处理
- 人教新目标版英语八上Unit 3《Im more out-going than my sister》精美说课稿
- 中小企业数字化转型研究报告2024年
- WS∕T 391-2024 CT检查操作规程
评论
0/150
提交评论