《单调性、最大值与最小值》三角函数课件_第1页
《单调性、最大值与最小值》三角函数课件_第2页
《单调性、最大值与最小值》三角函数课件_第3页
《单调性、最大值与最小值》三角函数课件_第4页
《单调性、最大值与最小值》三角函数课件_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2课时 单调性、最大值与最小值三角函数一二三一、正弦函数与余弦函数的单调性1.观察正弦曲线,正弦函数在哪些区间上是增函数?在哪些区间上是减函数?如何将这些单调区间进行整合?类似地,余弦函数在哪些区间上是增函数?在哪些区间上是减函数?怎样整合这些区间?一二三2.填空(2)余弦函数y=cos x在每一个闭区间-+2k,2k(kZ)上都单调递增;在每一个闭区间2k,+2k(kZ)上都单调递减.一二三3.做一做(1)函数y=sin 2x-1的单调递增区间是;(2)函数y=3-cos 2x的单调递增区间是.一二三二、正弦函数与余弦函数的最值和值域1.观察正弦曲线和余弦曲线,正、余弦函数是否存在最大值和

2、最小值?若存在,其最大值和最小值分别为多少?当自变量x分别取何值时,正弦函数y=sin x取得最大值和最小值?余弦函数呢?一二三3.做一做(1)函数y=2-3sin x的最小值是;(2)当函数y=cos 取得最大值时,x的值等于.解析:(1)因为y=sin x的最大值为1,所以y=2-3sin x的最小值是-1.(2)当 =2k,kZ,即x=4k,kZ时,函数y=cos 取得最大值.答案:(1)-1(2)4k(kZ)一二三三、正弦函数与余弦函数的对称性1.观察正弦曲线与余弦曲线,正弦曲线除了关于原点对称外,是否还关于其他的点和直线对称?余弦曲线除了关于y轴对称外,是否还关于其他的点和直线对称?

3、一二三2.填空(1)(2)正弦曲线(余弦曲线)的对称轴都经过正弦曲线(余弦曲线)的最高点或最低点,即函数y=sin x(y=cos x)的最值点;正弦曲线(余弦曲线)的对称中心都经过正弦曲线(余弦曲线)与x轴的交点,即函数y=sin x(y=cos x)的零点.一二三3.做一做(1)函数y=sin x+3的图象的一条对称轴方程为()A.x=-B.x=0(2)函数y=2cos x-1的图象的一个对称中心为()答案:(1)D(2)C 探究一探究二探究三探究四思维辨析随堂演练求三角函数的单调区间例1求下列函数的单调递减区间:分析:(1)可采用整体换元法并结合正弦函数、余弦函数的单调区间求解;(2)可

4、先将自变量x的系数转化为正数再求单调区间.探究一探究二探究三探究四思维辨析随堂演练探究一探究二探究三探究四思维辨析随堂演练反思感悟 与正弦函数、余弦函数有关的单调区间的求解技巧:(1)结合正弦、余弦函数的图象,熟记它们的单调区间;(2)确定函数y=Asin(x+)(A0,0)单调区间的方法:采用“换元”法整体代换,将x+看作一个整体,可令“z=x+”,即通过求y=Asin z的单调区间求出原函数的单调区间.若0,忽视了对a0和A0两种情况进行分类讨论.探究一探究二探究三探究四思维辨析随堂演练2.忽略函数的定义域 探究一探究二探究三探究四思维辨析随堂演练防范措施 解决与三角函数有关的复合函数问题

5、时,讨论函数的单调性时,要注意“定义域优先”的原则,尤其是当与对数函数、幂函数等进行复合时,要格外引起注意.探究一探究二探究三探究四思维辨析随堂演练A.增函数B.减函数C.先减后增函数D.先增后减函数答案:C探究一探究二探究三探究四思维辨析随堂演练2.函数y=2-sin x的最大值及取最大值时x的值为() 答案:C 探究一探究二探究三探究四思维辨析随堂演练答案:B 探究一探究二探究三探究四思维辨析随堂演练探究一探究二探究三探究四思维辨析随堂演练我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激励能力

6、是人自我调节系统中重要的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的作用。具备自我激励能力的人,富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自家的后院练习棒球。在挥动球棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,挥动依旧没有击中。男孩子停下来,检查了球棒和球,然后用更大的力气对自己喊:“我是世界上最棒的

7、棒球手!”可是接下来的结果,并未如愿。男孩子似乎有些气馁,可是转念一想:我抛球这么刁,一定是个很棒的挥球手。接着男孩子又对自己喊:“我是世界上最棒的挥球手!”其实,大多数情况下,很多人做不到这看似荒谬的自我鼓励,可是,这故事却深深反映了这个男孩子自我鼓励下的执著,而这执著是很多人并不具备的而许多奇迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要目标太小、而且太模糊不清,使自己失去动力。如果你的主要目标不能激发你的想象力,目标的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目标的道路绝不是坦途。它总是呈现出一条波浪

8、线,有起也有落,但你可以安排自己的休整点。事先看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整计划。这才是明智之举。在自己的事业波峰时,要给自己安排休整点。安排出一大段时间让自己隐退一下,即使是离开自己挚爱的工作也要如此。只有这样,在你重新投入工作时才能更富激情。困难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。如果把困难看作对自己的诅咒,就很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力陡生。所以,困难不可怕,可怕的是回避困难。大多数人通过别人对自己的印象和看法来看自己。获得别人对自己的反映很不错,尤其正面反馈。但是,

9、仅凭别人的一面之辞,把自己的个人形象建立在别人身上,就会面临严重束缚自己的。因此,只把这些溢美之词当作自己生活中的点缀。人生的棋局该由自己来摆。不要从别人身上找寻自己,应该经常自省。有时候我们不做一件事,是因为我们没有把握做好。我们感到自己“状态不佳”或精力不足时,往往会把必须做的事放在一边,或静等灵感的降临。你可不要这样。如果有些事你知道需要做却又提不起劲,尽管去做,不要怕犯错。给自己一点自嘲式幽默。抱一种打趣的心情来对待自己做不好的事情,一旦做起来了尽管乐在其中。所以,这次犯错,是为了下次接受挑战后,要尽量放松。在脑电波开始平和你的中枢神经系统时,你可感受到自己的内在动力在不断增加。你很快

10、会知道自己有何收获。自己能做的事,放松可以产生迎接挑战的勇气。事过境迁,面对人生,面对社会,面对工作,一切的未来都需要自己去把握。人一定要靠自己。命运如何眷顾,都不会去怜惜一个不努力的人,更不会去同情一个懒惰的人,一切都需要自己去努力。谁都不可能一生一世的帮你,一时的享受也只不过是过眼云烟,成功需要自己去努力。当今社会的快速发展,各行各业的疲软,再加上每年几百万毕业生涌向社会,社会生存压力太大,以至于所有稍微有点意识的年轻人都想努力提高自己。看着身边一个个同龄人那么优秀,看着朋友圈的老同学个个事业有成、买房买车,我们心急如梵,害怕被这个社会抛弃。所以努力、焦躁、急迫这些名词缠绕着越来越多的年轻

11、人,我们太想改变自己,太想早一日成为自己梦想中的那个自己。收藏各种技能学习资料,塞满了电脑各大硬盘;报名流行的各种付费社群,忙的人仰马翻;于是科比看四点钟的洛杉矶成为大家励志的手段,纷纷开始早起打卡行动。其实其实我们不觉得太心急了吗?这是有一次自己疲于奔命,病倒了,在医院打点滴时想到的。我时常恐慌,害怕自己浪费时间,就连在医院打点滴的时候,都觉得是对时间的一种浪费。想快点结束,所以乘着护士不在,自己偷偷的拨快了点滴速度。刚开始自己还能勉强受得了,过了差不多十分钟,真心忍不住了,只好叫护士帮我调到合适的速度。打完点滴走在回家的路上,我就在想,平时做事和打点滴何尝不是一样,都是有一个度,你太急躁了

12、、太想赶超,身体是受不了的。身体是革命的本钱,我们还年轻,还有大把的时间够我们改变,够我们学习成长。身体就像是1000前面的那个若是1都不存在了,后面再多的0又有什么用?我是一个急性子,做事风风火火的,所以对于想改变自己,是比任何人都要心急。这次病倒了,个人感觉完全是没有方向、不分主次的一通乱忙乎才导致的,病倒换来的努力根本是一钱不值。生病的那几天,我跟自己的大学老师打了一个电话,想让老师帮我解惑一下,自己到底是怎么了。别人也很努力啊,而且他们取得的成就远远超过我了,为啥他们反到身体倍棒而一无所获的自己却病倒了?老师开着电脑,给我分享了两个小故事讲的第一个故事是“保龄球效应”,保龄球投掷对象是

13、10个瓶子,你如果每次砸倒9个瓶子,最终得分是90分,而你如果每次能砸倒10个瓶子,最终得分是240分。故事讲完,老师问我明白啥意思没?我说大概猜到一点,你让我再努力点,对吗?不对!你已经够努力了,都累病了,我讲这个故事是告诉你,你现在就是那个每次砸倒9个瓶子的人。你累倒的原因是因为你同时在几个场馆玩,每一个场馆得分都是90分,而有些人,则是只在一个场馆玩,玩多了,他就能砸倒10个瓶子,他就能比你轻松十倍,得分却还是远远超过你。老师讲的第二故事是“挖水井”,一个人选择好一处地基,就在那里一直坚持不懈的挖下去,而另一个人则是到处选地基,这边挖几米,那边挖几米。第一个人早早的就挖出水来了,而另一个

14、人则是直到累死也没有挖出一滴水。首先,你必须承认努力是必须的,只要你比别人努力了那么一点,你确实能超过一些人。只是人的精力也是有限的,你这样分散精力去努力,最终得到的结果只会是永远装不满水桶的半桶水。和老师通完电话后,我调整了几天,也对自己手头上的事物做一些大改变。将目前摆在面前的计划一一列出来,挑出最重要的、最必须的,写在第一行,再以此类推,排完手中所有的计划。对于那些不是很急的,对目前生活和工作不是特别重要的,先果断放弃。我现在最迫切的目标是什么?当然是七月份的转行新媒体咯,那么学习历练新媒体技能就是第一位。而新媒体所需学习的技能又有很多,那怎么办呢?先挑自己有点底子的,有点基础的,把巩固

15、持续加强。个人感觉自己写还是有点小基础的,所以就给自己一个小目标,每周必须持续输出几篇文字,加强文案方面的训练。而另外PS也是做运营的必备条件之一,所以在训练文案的同时,还得练习PS,给自己的要求是每天练习PS半小时。还有别的吗?不敢有了,两样训练加上还要上班已经差不多了。一直很喜欢作家刘瑜的一段话:每当我一天什么也没干的时候,我就开始焦虑。每当我两天什么都没干的时候,我就开始烦躁。每当我三天什么都没干的时候,我就开始抓狂。不行啊,不行了,我三天什么都没干啊,我寝食难安这正是我三个月前的真实写照。多年来,我已经养成一种习惯,绝不让任何一分钟死有余辜:我在堵车的时候听日语,在等人的时候写文章,在上厕所的时候看书,在任意两件事的衔接点那里扒出细缝,用来回邮件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论