用样本的频率分布估计总体分布导学案_第1页
用样本的频率分布估计总体分布导学案_第2页
用样本的频率分布估计总体分布导学案_第3页
用样本的频率分布估计总体分布导学案_第4页
用样本的频率分布估计总体分布导学案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、用样本的频率分布估计总体分布导学案【学习目标】通过实例体会分布的意义和作用;在表示样本数据的过程中,学会列频率分布表,画频率分布直方图、频率折线图和茎叶图;通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计。【重点难点】重点:会列频率分布表,画频率分布直方图、频率折线图和茎叶图难点:能通过样本的频率分布估计总体的分布【课前预习】阅读课本P58P63完成下列问题:一般用频率分布直方图反映样本的频率分布。其一般步骤有:(填空)(1)(2)(3)(4)(5)频率分布直方图的特征(优缺点)是什么?思考探究:频率分布直方图中,各小长方形的面

2、积表示,它们的总和等于;同样一组数据,如果组距不同,横轴、纵轴的单位不同,得到的图和形状也会不同。不同的形状给人以不同的印象,这种印象有时会影响我们对总体的判断。频率分布折线图、总体密度曲线(1)频率分布折线图的定义:.总体密度曲线的定义与反映数据的特点:思考探究:(1)对于任何一个总体,它的密度曲线是不是一定存在?为什么?对于任何一个总体,它的密度曲线是否可以被非常准确地画出来?为什么?茎叶图(1)茎叶图的概念:茎叶图的特征(优缺点):【典型例题】例1、下表给出了某校500名12岁男孩中用随机抽样得出的120人的身高(单位cm)(1)列出样本频率分布表;区间界限122,126)126,130

3、)130,134)134,138)138,142)142,146)人数二5T8丁10223320区间界限146,150)150,154)154,158)人数1165画出频率分布直方图;画出频率分布折线图;(4)估计身高小于134cm的人数占总人数的百分比变式训练:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?在这次测试

4、中,学生跳绳次数的中位数落在哪个小组内?请说明理由。次数次数例2、从两个班中各随机的抽取10名学生,他们的数学成绩如下:甲班:76,74,82,96,66,76,78,72,52,68乙班:86,84,62,76,78,92,82,74,88,85画出茎叶图并分析两个班学生的数学学习情况。变式训练如图表示甲、乙两名篮球运动员每场比赛得分情况的茎叶图,贝卅和乙得分的中位数的和是()【基础达标】【基础达标】为了解一批数据在各个范围内所占的比例大小,将这批数据分组,落在各个TOCo1-5hz小组里的数据个数叫做()A、频数B、样本容量C、频率D、频数累计在频率分布直方图中,各个小长方形的面积表示()

5、A、落在相应各组的数据的频数B、相应各组的频率C、该样本所分成的组数D、该样本的容量列样本频率分布表时,决定组数的正确方法是()A、任意确定B、一般分为512组C、由组距和组数决定D、根据经验法则,灵活掌握一个容量为n的样本,分成若干组,已知某组的频数和频率分别为40,0、125,则n的值为()A、640B、320A、640B、320C、240、160为考察某种皮鞋的各种尺码的销售情况,以某天销售40双皮鞋为一个样本,把它按尺码分成5组,第3组的频率为0、25,第1,2,4组的频率分别为6,7,9,若第5组表示的是4042码的皮鞋,则售出的200双皮鞋中含4042码的皮鞋为()A、50B、40

6、C、20D、30一个容量为20的样本数据,分组后组距与频数如下:(10,20,2;(20,30,3;(30,40,4;(40,50,4;(60,70,2。则样本在区间(-:,50上的频率是()A、5%B、25%C、50%D、70%将一批数据分成5组列出频率分布表,其中第1组的频率是0、1,第4组与第5组的频率之和是0、3,那么第2组与第3组的频率之和是。【拓展提升】从一群学生中收取一个一定容量的样本对他们的学习成绩进行分析,前三组是不超过80分的人,其频数之和为20人,其频率之和(又称累积频率)为0、则所抽取的样本的容量是()A、100B、80C、40D、50下列叙述中正确的是()A、从频率分

7、布表可以看出样本数据对于平均数的波动大小B、频数是指落在各个小组内的数据C、每小组的频数与样本容量之比是这个小组的频率D组数是样本平均数除以组距有一个数据为50的样本数据分组,以及各组的频数如下,根据累积频率分布,估计小于30的数据大约占多少()12、5,15、5),3;15、5,18、5),8;18、5,21、5),9;21、5,24、5),11;24、5,27、5),10;30、5,33、5),4A10%B、92%C、5%D、30%在抽查某产品尺寸的过程中,将其尺寸分成若干组,a,b是其中一组,抽查出的个体数在该组上的频率为m该组上的直方图的高是h,贝U,a-b等于()A、hmB、mC、D

8、、与mh无关hm已知一个样本75,71,73,75,77,79,75,78,80,79,76,74,75,77,76,72,74,75,76,78。在列频率分布表时,如果组距取为2,那么应分成组,第一组的分点应是一,74、576、5这组的频数应为,频率应为。在求频率分布时,把数据分为5组,若已知其中的前四组频率分别为0、1,0、3,0、3,0、1,则第五组的频率是,这五组的频数之比为。7.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组及频率如下表:分组频数频率10、75,10、85)310、85,10、95)910、95,11、05)1311、05,11、15)1611、15

9、,11、25)2611、25,11、35)2011、35,11、45)711、45,11、55)411、55,11、65)2合计100完成上面的频率分布表;根据上表画出频率分布直方图;根据上表和图,估计数据落在10、95,11、35)范围内的概率约是多少?数据小于11、20的概率约是多少?(对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:甲27383073531乙332938342836(1)画出茎叶图,由茎叶图你能获得哪些信息?(2)分别求出甲、乙两名自行车赛手最大速度(m/s数据的平均数、中位数、标准差,并判断选谁参加比赛更合适.【学习反思】1、制作频率分布直方图分几个步骤?各步骤需要注意哪些问题?2、频率分布直方图和茎叶图相比有什么特点?答:1、步骤:计算一组数据中最大值与最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论