




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Training Region-based Object Detectors with Online Hard Example MiningAbhinav Shrivastava, Abhinav Gupta, Ross Girshick Focal Loss for Dense Object Detection Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels Lu Ji
2、ang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, Li Fei-Fei Reporter: Fujin HeTraining Region-based Object Detectors with Online Hard Example MiningTraining Region-based Object Detectors with Online Hard Example MiningPART 01a large imbalance between the number of annotated objects and the number of ba
3、ckground examples , such as the deformable parts model (DPM) , this imbalance may beas extreme as 100,000 background examples to every oneobject. The recent trend towards object-proposal-based detectors mitigates this issue to an extent, but the imbalance ratio may still be high (e.g., 70:1) challen
4、geFor some period of time a fixed model is used to find new examples to add to the active training set.For some period of time the model is trained on the fixed active training set. ONEBenefitsIt removes the need for several heuristics and hyperparameters commonly used in region-based ConvNets .TWOI
5、t yields a consistent and significant boosts in mean average precision. THREEIts effectiveness increases as the training set es larger and more difficult, as emonstrated by results on the MS COCO dataset. Focal Loss for Dense Object Detection MentorNet: Regularizing Very Deep Neural Networks on Corr
6、upted Labels MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels PART 03TWOTHREEONEWe discover that deep CNNs trained on corr-upted labels can be improved by learning another network toweigh training examples. We propose an algorithm to optimize MentorNet with deep CNNs on big data
7、 and prove its conv-ergence under standard and mild assumptions. We empirically verify the proposed model on 4 datasets of both controlled and real-world noisy labels.ModelObjective FunctionD is training set, yi is the corresponding noisy label vector. Let gs denote the dis-Criminative function of a
8、 neural network called StuentendNet, L is a m-dimensional cloumn vector, denote the loss over m classes. v is a vector to represent the weight for i-th example, the function G is the explicit data regularizer(a technique adding a penalty term to the error function to prevent overfitting) ang lamda i
9、s the hyperparmeter, G determines the complexity of a weighting scheme, and imposes an (unnormalized) weight distribution over all training examples. AlgorithmIn the subroutine of minimizing w when fixing v, stochastic gradient descent often takes many steps before converging. This means that it can take a long time before moving past this single sub-step.More importantly, the subroutine of minimizing v
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CACEM 15.2-01-2020城市公共交通运营服务第1部分:基本要求
- 运动头盔内部结构对安全性能的影响考核试卷
- 如何选择适合的嵌入式开发平台试题及答案
- 公路建设项目的生命周期管理试题及答案
- 药用纯化水设备与系统设计考核试卷
- 行政组织理论变革的动态分析及2025年试题及答案
- 航空员工培训与发展考核试卷
- 油砂资源综合利用考核试卷
- 应对突发情况的公路工程试题及答案
- 数据库技术文档的重要性试题及答案
- 2023年《畜牧兽医综合知识复习题及答案》
- 八年级语文下册(部编版) 第四单元 经典演讲-单元主题阅读训练(含解析)
- 2024新高考英语1卷试题及答案(含听力原文)
- 2023-2024学年译林版四年级英语下册Unit8《How are you?》单元检测卷(含听力及答案)
- DL/T 5352-2018 高压配电装置设计规范
- 养老院食物中毒应急预案
- 国家开放大学《消费者行为学》形考任务实训(六选一)参考答案
- AQ∕T 7009-2013 机械制造企业安全生产标准化规范
- JTG-C30-2002公路工程水文勘测设计规范-PDF解密
- 2024年广东广州越秀区小升初考试语文试卷含答案
- 慢性病照护智慧树知到期末考试答案2024年
评论
0/150
提交评论