版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Training Region-based Object Detectors with Online Hard Example MiningAbhinav Shrivastava, Abhinav Gupta, Ross Girshick Focal Loss for Dense Object Detection Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollar MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels Lu Ji
2、ang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, Li Fei-Fei Reporter: Fujin HeTraining Region-based Object Detectors with Online Hard Example MiningTraining Region-based Object Detectors with Online Hard Example MiningPART 01a large imbalance between the number of annotated objects and the number of ba
3、ckground examples , such as the deformable parts model (DPM) , this imbalance may beas extreme as 100,000 background examples to every oneobject. The recent trend towards object-proposal-based detectors mitigates this issue to an extent, but the imbalance ratio may still be high (e.g., 70:1) challen
4、geFor some period of time a fixed model is used to find new examples to add to the active training set.For some period of time the model is trained on the fixed active training set. ONEBenefitsIt removes the need for several heuristics and hyperparameters commonly used in region-based ConvNets .TWOI
5、t yields a consistent and significant boosts in mean average precision. THREEIts effectiveness increases as the training set es larger and more difficult, as emonstrated by results on the MS COCO dataset. Focal Loss for Dense Object Detection MentorNet: Regularizing Very Deep Neural Networks on Corr
6、upted Labels MentorNet: Regularizing Very Deep Neural Networks on Corrupted Labels PART 03TWOTHREEONEWe discover that deep CNNs trained on corr-upted labels can be improved by learning another network toweigh training examples. We propose an algorithm to optimize MentorNet with deep CNNs on big data
7、 and prove its conv-ergence under standard and mild assumptions. We empirically verify the proposed model on 4 datasets of both controlled and real-world noisy labels.ModelObjective FunctionD is training set, yi is the corresponding noisy label vector. Let gs denote the dis-Criminative function of a
8、 neural network called StuentendNet, L is a m-dimensional cloumn vector, denote the loss over m classes. v is a vector to represent the weight for i-th example, the function G is the explicit data regularizer(a technique adding a penalty term to the error function to prevent overfitting) ang lamda i
9、s the hyperparmeter, G determines the complexity of a weighting scheme, and imposes an (unnormalized) weight distribution over all training examples. AlgorithmIn the subroutine of minimizing w when fixing v, stochastic gradient descent often takes many steps before converging. This means that it can take a long time before moving past this single sub-step.More importantly, the subroutine of minimizing v
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026湖南株洲市教育局直属学校面向高校毕业生招聘教师5人考试备考题库及答案解析
- 2026年小学大队委和值日生竞选方案
- 2025重庆农投肉食品有限公司招聘13人备考笔试试题及答案解析
- 深度解析(2026)《GBT 25915.8-2021洁净室及相关受控环境 第8部分:按化学物浓度划分空气洁净度(ACC)等级》
- 2026年河北张家口经开区编办青年就业见习岗位招聘备考考试试题及答案解析
- 深度解析(2026)《GBT 25714.1-2010铁液浇包 第1部分:型式与基本参数》(2026年)深度解析
- 深度解析(2026)GBT 25668.1-2010镗铣类模块式工具系统 第1部分:型号表示规则
- 2025-2026广东佛山里水中学教师招聘参考笔试题库附答案解析
- 2026广东佛山大学诚聘海内外高层次人才招聘参考笔试题库附答案解析
- 2025辽宁建筑职业学院赴高校现场招聘10人参考考试试题及答案解析
- MOOC 电子线路设计、测试与实验(一)-华中科技大学 中国大学慕课答案
- 河北省部分地区2023-2024学年度高二上学期期末考试英语试题(解析版)
- 医学装备管理与使用理论考核试题及答案
- 医院产科培训课件:《妊娠期宫颈疾病的诊治策略》
- 水质监测服务投标方案(技术标)
- 国家集采中选目录1-8批(完整版)
- 【员工关系管理研究国内外文献综述2800字】
- 《三只小猪盖房子》拼音版故事
- YS/T 921-2013冰铜
- GB/T 6072.1-2008往复式内燃机性能第1部分:功率、燃料消耗和机油消耗的标定及试验方法通用发动机的附加要求
- GB/T 3883.201-2017手持式、可移式电动工具和园林工具的安全第2部分:电钻和冲击电钻的专用要求
评论
0/150
提交评论