解题策略的种类Problem课件_第1页
解题策略的种类Problem课件_第2页
解题策略的种类Problem课件_第3页
解题策略的种类Problem课件_第4页
解题策略的种类Problem课件_第5页
已阅读5页,还剩188页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、談問題解決-以數學科教學為例 左太政/高雄師範大學數學系數學解題的概念數學解題歷程及策略範例解說一、緒論(一)何謂數學問題?許多學者對於問題有不同解釋Wickelgren(1974)指出: 問題由三種型式的訊息(informations)組合而成,即1.給定條件(givens)、2.運算(operations) 、3.目標(goals) 。 給定條件 乃是指由一些objects、things、pieces of materials等所表達的方式,以及包含一些假設、定義、公設、公理、性質及定理等。運算 主要是指將給定條件中一個或數個表達方式轉換成新的表達方式,另一種說法是指變換(transfor

2、mations)及推測法則(rules of inference)。 目標 是指我們期望去完成的最終表達方式,簡言之,就是題目要求或證明什麼。 數學中的問題解決問題,是數學的核心,學習數學就是學習如何解決問題,包括那些可以轉換成數學題的各類問題(即外在連結)。由於解題的態度和學習方法的不同,將影響其學習成效。 問題與習題的區別問題解決中的問題,並不包括常規數學問題,而是指非常規數學問題和數學的應用問題。常規數學問題,就是指課本中既已唯一確定的方法或可以遵循的一般規則、原理,而解法程序和每一步驟也都是完全確定的數學問題。 解題的意義 知識的表現指解題者擁有特殊解決問題的學科知識,如幾何學、代數學

3、、數論、機率與統計等;解題的表現指解題者以已知一般的學科知識,以程序性的方式,如四則運算、作圖表等,靈活運用來解決問題。數學解題的目的 要訓練、培養學生、使他們有能力與自信面對並解決非例行性的數學問題。在建構理論的觀點下,教師是佈題者(problem poster),而不是解題者(problem solver);是讓學生自行提出有效的解題活動,而非只是讓學生做一個模仿者。 教師能依下列方式教導學生,將有助於數學的學習 能教導學生將解題視為是研究的觀點,將所解的每一道題目,仔細加以研究。在解題之前,必須探討其與已知的數學知識、方法及過去解題經驗之間的聯繫,從中找出一條或多條解題思路。教師能依下列

4、方式教導學生,將有助於數學的學習 解題之後,需再研究其多種不同的解法;嘗試將題目條件的變化或推廣,進而產生新的題目。如果能這樣做,達到貫通數學知識和數學方法的目的,以提高學生解題能力及學習的成效。簡言之,數學解題是指:解題係指當某人在解一個數學問題時,這個人為獲得答案所從事的一系列活動。數學解題係指在解決數學問題過程中需要用到一些數學概念、原理或方法等。二、解題策略及 解題歷程參考下列二位學者1. G. Polya2. A. SchoenfeldSchoenfeld 提及:解題成功的因素解題能否成功,取決於有關知識及技能所涉及的四個範疇 (1)資源(resources):有關數學的程序知識與性

5、質等。(2)捷思 (heuristics):解題的策略及技巧。(3)掌握(control):能決定什麼是及何時使用上述所提及的資源及策略。(4)信念(beliefs):從數學觀點如何確定能解決問題。(一)解題策略的意義策略是指完成任務的方法。解題策略是指解決數學問題所使用的方法。解題策略的種類(Problem-Solving Strategies)AlgorithmsHeuristics Trial-and-Error Insight 1. Algorithms An algorithm is a step-by-step procedure that will always produce

6、a correct solution. A mathematical formula is a good example of a problem-solving algorithm. While an algorithm guarantees an accurate answer, it is not always the best approach to problem solving. 2. HeuristicsHeuristic refers to experience-based techniques for problem solving, learning, and discov

7、ery. Examples of this method include using a “rule of thumb”經驗法則, an educated guess, an intuitive judgment, or common sense.In more precise terms, heuristics are strategies using readily accessible, though loosely applicable, information to control problem solving in human beings and machines.Polya對

8、Heuristic 的說明:If you are having difficulty understanding a problem, try drawing a picture. If you cant find a solution, try assuming that you have a solution and seeing what you can derive from that (working backward). If the problem is abstract, try examining a concrete example(如求長方體的對角線長). Try sol

9、ving a more general problem first (the inventors paradox: the more ambitious plan may have more chances of success). 捷思策略(Heuristic Strategy)A general suggestion or technique which helps problem-solvers to understand or to solve a problem.表示一種一般的建議(general suggestion)或策略,可協助解題者瞭解題意與有效地利用他們的資源去解題。 3.

10、 Trial-and-Error A trial-and-error approach to problem-solving involves trying a number of different solutions and ruling out those that do not work. This approach can be a good option if you have a very limited number of options available. If there are many different choices, you are better off nar

11、rowing down the possible options using another problem-solving technique before attempting trial-and-error.4. InsightIn some cases, the solution to a problem can appear as a sudden insight. According to researchers, insight can occur because you realize that the problem is actually similar to someth

12、ing that you have dealt with in the past, but in most cases the underlying mental processes that lead to insight happen outside of awareness. George Plya, (Hungary, 1887 -1985 )Plya worked in probability, analysis, number theory, geometry, combinatorics and mathematical physics. The aim of heuristic

13、 is to study the methods and rules of discovery and invention . Heuristic, as an adjective, means serving to discover. . its purpose is to discover the solution of the present problem. . What is good education? Systematically giving opportunity to the student to discover things by himself. Polya的至理名

14、言: If you cant solve a problem, then there is an easier problem you cant solve: find it. 這是所謂類比(屬於Heuristic解法的一種)G. Polya and “How to Solve It!”An outline of Polyas framework (即解題歷程)Understanding the Problem Identify the goal The first step is to read the problem and make sure that you understand it

15、 clearly. Ask yourself the following questions:(1) What is the unknown?(2) What are the given quantities? What is the conditions? Are there any constraints?Polya taught teachers to ask students questions such as:Do you understand all the words used in stating the problem? What are you asked to find

16、or show? Can you restate the problem in your own words? Can you think of a picture or a diagram that might help you understand the problem? Is there enough information to enable you to find a solution? 2. Devising a PlanFind a connection between the given information and the unknown that will enable

17、 you to calculate the unknown. It often helps you to ask yourself explicitly: ”How can I relate the given to the unknown?”If you do not see a connection immediately, the following ideas may be helpful in devising a plan.(1) Establish subgoals (divide into subproblems)In a complex problem it is often

18、 useful to set subgoals. If we can first reach these subgoals, then we may be able to build on them to reach our final goal.(2) Try to recognize something familiarRelate the given situation to previous knowledge. Look at the unknown and try to recall a more familiar problem that has a similar unknow

19、n or involves similar principles.(3) Try to recognize patternsSome problems are solved by recognizing that some kind of pattern is occurring. The pattern could be geometric, or numerical, or algebraic. If you can see regularity or repetition in a problem,you might be able to guess what the continuin

20、g pattern is and then prove it. This is one reason you need to do lots of problems, so that you develop a base of patterns!(4) Use analogyTry to think of an analogous problem, that is, a similar problem, a related problem, but one that is easier than the original problem. If you can solve the simila

21、r, simpler problem, then it might give you the clues you need to solve the original, more difficult problem. For instance, if the problem is in three-dimensional geometry, you could look for a similar problem in two-dimensional geometry.Or if the problem you start with is a general one, you could fi

22、rst try a special case. One must do many problems to build a database of analogies!常見類比原則Fewer variables三維空間幾何題化為二維平面題(5) Introduce something extraIt may sometimes be necessary to introduce something new, an auxiliary aid, to help make the connection between the given and the unknown. For instance,

23、in a problem where a diagram is useful the auxiliary aid could be a new line drawn in a diagram. 作補助線In a more algebraic problem it could be a new unknown that is related to the original unknown.引進新的變數(6) Take casesWe may sometimes have to split a problem into several cases and give a different solu

24、tion for each of the cases. For instance, we often have to use this strategy in dealing with absolute value.(7) Work backward 倒推法(assume the answer)It is often useful to imagine that your problem is solved and work backward, step by step, untilyou arrive at the given data. Then you may be able to re

25、verse your steps and thereby construct a solution to the original problem. This procedure is commonly used in solving equations. For instance, in solving the equation 3x5 = 7, we suppose that x is a number that satisfies 3x5 = 7 and work backward. We add 5 to each side of the equation and then divid

26、e each side by 3 to get x = 4. Since each of these steps can be reversed, we have solved the problem.(8) Indirect reasoningSometimes it is appropriate to attack a problem indirectly. In using proof by contradiction to prove that P implies Q .we assume that P is true and Q is false and try to see why

27、 this cannot happen.The skill at choosing an appropriate strategy is best learned by solving many problems. You will find choosing a strategy increasingly easy. A partial list of strategies is included:Guess and check Make and orderly list Eliminate possibilities Use symmetry Consider special cases

28、Use direct reasoning Solve an equation Look for a pattern Draw a picture Solve a simpler problem Use a model Work backward Use a formula Be ingenious (心靈手巧的)3. Carrying out the PlanIn step 2 a plan was devised. In carrying out that plan we have to check each stage of the plan andwrite the details th

29、at prove that each stage is correct. A string of equations is not enough!4. Looking BackBe critical of your result; look for flaws in your solutions (e.g., inconsistencies or ambiguities or incorrect steps). Be your own toughest critic! Can you check the result? Checklist of checks:Is there an alter

30、nate method that can yield at least a partial answer?Try the same approach for some similar but simpler problem. Check units (always, always, always! ). If there is a numerical answer, is the order of magnitude correct or reasonable?Check special cases where the answer is easy or known. This might b

31、e a special angle (0 or 45 or 90 degrees) or the case when all masses are set equal to each other.Use symmetry. Does your answer reflect any symmetries of the physical situation?If possible, do a simple experiment to see if your answer makes sense. 數學解題策略 瞭解問題- 審查題意,發掘概念內涵;若題意不了解,不妨再閱讀二至三次, 直至了解題意。

32、數學解題策略擬定計畫-分析問題及產生聯想,尋求解題途徑 (1) 儘可能畫出圖形或表格 (2) 檢查特例如令問題中整數取 1, 2, 3, 4, 5 等 代入,看看是否可歸納出規律來。 (3) 嘗試簡化問題如利用對稱性、採用不妨假設 而不失問題的一般討論方式。 (4) 保留任何解題的紀錄,以便先做別題後再回頭解本題時參考使用。 (5)將一個問題分成一系列子問題 數學解題策略實行計畫-選擇策略及綜合運用知識去進行推理計算解決問題回顧解答-驗證答案是否合理及思考結果或方法能否用於解其他問題,甚至於自己修改原問題或推廣其結論,形成另一個問題,亦可考慮作為專題研究之題目。 3R解題策略解題活動先從題目待

33、答或待證明的地方著手(Request),適時引進題目的已知條件及潛在的性質(Response),最後導出結果(Result).這是所謂的3 R策略。 Alan H. SchoenfeldProfessorCognition and DevelopmentUniversity of California, BerkeleyDegreesPh.D. in Mathematics, 1973, Stanford University M.S. in Mathematics, 1969, Stanford University B.A. in Mathematics, 1968, Queens Col

34、lege, New York Alan SchoenfeldSchoenfeld從事:Research and development in human AI,於1980年提出研究報告:Teaching problem-Solving Skills該篇研究報告主要處理二個問題是否能夠明確描述出解題熟手所使用的解題策略為何?我們是否能夠將這些解題策略教導學生如何解題?Schoenfeld的解題歷程分析(Analysis)設計(Design)探究或探索(Exploration)履行或完成(Implementation)驗證(Verification)解題策略(一)分析與瞭解問題題意:(二)設計與計

35、畫求解(Designing and planning a solution)(三)對於困難問題進行其解的探索(Exploring solutions to difficult problems)(四)驗證其解(Verifying a solution)(一)分析與瞭解問題題意 1.如有可能的話可作圖或表。2.考慮特殊情形可由下列方式進行(Examine special cases to):(a) 視為問題的特例(exemplify the problem);(b)探究可能取值的範圍(explore the range of possibilities through limiting case

36、s);(c) 將整數參數從1,2,3,依序探討起,尋找其規律性(find inductive patterns by setting integer parameters equal to 1,2,3,in sequence.)。3.利用對稱性或為不失一般性嘗試簡化題目(二)設計與計畫求解 1.有系統地計畫求解(Pan solutions hierarchically) 2.對於求解的任何觀點,都能夠去解釋你正在做什麼及為什麼這樣做;經過此過程後你將會做什麼(Be able to explain, at any point in a solution, what you are doing a

37、nd why, what you will do with the result of this operation)。(三)對於困難問題進行其解的探索 1.考慮各種等價的問題(Consider a variety of equivalent problems)2.考慮將原問題作些許的修改3.考慮將原問題作大幅度的修改(四)驗證其解 1. 利用特殊情形作檢驗(Use these specific tests: Does it use all the data? Conform to reasonable estimates? Stand up to tests of symmetry, dim

38、ension analysis, scaling?)2. 利用一般情形作檢驗 分析與瞭解問題題意 1.如有可能的話可作圖或表。2.考慮特殊情形可由下列方式進行(Examine special cases to): (a) 視為問題的特例(exemplify the problem); (b)探究可能取值的範圍(explore the range of possibilities through limiting cases); (C)將整數參數從1,2,3,依序探討起,尋找其規律性(find inductive patterns by setting integer parameters eq

39、ual to 1,2,3,in sequence.)。 3.利用對稱性或為不失一般性嘗試簡化題目(Try to simply it by using symmetry or “without loss of generality)設計與計畫求解(Designing and planning a solution) 有系統地計畫求解(Pan solutions hierarchically) 對於求解的任何觀點,都能夠去解釋你正在做什麼及為什麼這樣做;經過此過程後你將會做什麼(Be able to explain, at any point in a solution, what you are

40、 doing and why, what you will do with the result of this operation)。 對於困難問題進行其解的探索(Exploring solutions to difficult problems) 1.考慮各種等價的問題(Consider a variety of equivalent problems) (1)(Replace conditions with equivalent ones) (2)(Recombine elements of the problem in different ways) (3)(Introduce aux

41、iliary elements) (4)(Reformulating the problem by) a. (a change of perspective or notation ) b. (arguing by contradiction or contrapositive)or c.(assuming a solution and determining the properties it must have)Consider slight modifications of the original problem (1) (Choose subgoals and try to atta

42、in them)(2) (Relax a condition and then try to re-impose it)(3) (Decompose the problem and work on it case by case)Consider broad modifications of the original problems (Examine analogous problems with less complexity(fewer variables)(Explore the role of just one variable or condition, leaving the r

43、est fixed) (Exploit any problem with similar form, “givens“ or conclusions;try to exploit both the result and the method)(四)驗證其解(Verifying a solution)1.(Use these specific tests: Does it use all the data? Conform to reasonable estimates? Stand up to tests of symmetry, dimension analysis, scaling?)2.

44、 (Use these general tests: Can it be obtained differently? Substantiated by special cases? reduced to known results? Can it generate something you know? )heuristic strategies:1. Draw a diagram if at all possible.2. If there is an integer parameter, look for an inductive argument.3. Consider a logica

45、l alternative: arguing by contradiction or contrapositive.4. Consider a similar problem with fewer variables.5. Try to establish subgoals.三、範例解說問題1.已知 為介於0和1之間的正實數,試證:能否描述本題的解題策略?利用類比(Analogy)Fewer variables方法,先從二個變數著手,即先作其次,不等式的兩邊再分別乘以 及 去說明三個變數及原式的結果。問題2.試求: 之值。如何教導學生解題策略?通分?還是參考解法一將原式引進sigma符號來化簡

46、,即參考解法二考慮 ,再尋找規律性。類題計算問題3.試證:當 為質數,則 必為質數。目前已知最大的質數News note: GIPMS the 47th known Mersenne! 為12,978,189位數,可能是the 47th known Mersenne! Announced August 23, 2008. 參考網址http:/largest.htmlhttp:/default.php特殊與一般的轉化:數學新知試問: 的個位數字及末二位數為何? 問題試問43,112,609是否為質數?特殊與一般的轉化若 為質數,則 必為質數。(利用反證法)參考解法假設 為合數,令 為合數,與題意

47、不合。問題4.在單位球面上取二點,以一條圓弧連接此二點,試證:當此圓弧長小於2時,則必有一個半球與此弧長不相交。解題策略:利用類比策略先將原問題化為二維的情形(Fewer variables)問題5.設 為正實數, 試證: 及 這三數中不可全都大於 。問題6.試求四維空間球的體積。 又如何求其表面積?Fewer variables StrategyConsider lower dimension cases問題7.試證:當 , 則 。Consider two-variable case試證:當 ,則 。註:不宜考慮下列情形:當 ,則 。問題 8.給定二條相交於一點的直線,在其中一條上取一點 ,

48、如圖所示。試利用尺規作圖作一圓相切於此二直線,使得此圓與其中一條直線相切於點 。問題 9.在 中,試證可利用尺規作圖作一直線,平行於底邊 ,且將此三角形平分成二個面積相等的圖形。試問是否能夠利用類似的方法將此三角形分成五個面積相等的圖形? 問題 10.已知一圓的半徑為 ,試問此圓的內接三角形面積最大者為何?需說明理由。正整數與其數字之間的關係應用問題設 a, b, c 均為異於零的三個不同的數字,共可組成六個相異的三位數,已知其中五個三位數的和是 3185, 試問這六個三位數中最大的是多少? 正整數與其數字的關係 設 a, b, c 為三個都不是零的數字,試問用 a, b, c 三個數字能組成

49、若干個三位數?並說明這些三位數的和與 a, b, c 的關係。 提示:參考解答設此三位數為 由上題及題意知, 故滿足題意練習題設 a, b, c 均為異於零的三個不同的數字,共可組成六個相異的三位數,已知其中五個三位數的和是 3194, 試問這六個三位數中最大的是多少? 類題114 這個數有一特點:將114 的各位數字的數字和乘以 19 就得到 114.試問是否還有這樣的三位數嗎?如果有,請找出所有這樣的三位數。你能否觀察出本問題何以需乘以 19?是否可以改為乘以其他數而有類似結果呢? 參考解答設此三位數為 由上題及題意知, 整數與其數字的關係試找出所有正整數 a 使得 a 恰好等於它的所有數

50、字的平方和加上 1,例如 及 等,是否還有其它解?只有此二解35,75 整數與其數字的關係試找出所有正整數 a 使得 a 恰好等於它的所有數字的三次方的和,例如 =1, 153= , 370, 371, 407等五個數,是否還有其它解?試說明理由。(難題) 數論:卡布列克怪數卡布列克(L. D. Kaprekar,印度數學家)怪數是類似(30+25) =3025 這樣的數:即一個 2n 位數,把前 n 位數當作一個數加上這個數的後n 位數,它們之和的平方正好等於這個 2n 位數。試問四位數中有那些卡布列克怪數?類題:能否找出所有卡布列克怪數? 數論:卡布列克怪數提示:四位數中共有三組解-即20

51、25, 3025, 9801, 巴納德找出:1, 81, 52881984,60481729,試問如何求出其他位數?例如:六位數只有兩個數:494209, 998001. 卡布列克怪數由題意知:引進未知數:故(提示:共有三組解-2025, 3025, 9801)單元:一題多解有利於加強同學的思維訓練有利於培養同學的數學能力 例如:(1) 數與形的結合 (2) 轉化解題方法的培養 (3) 歸納能力 從一道數學題目談起如圖,試求 的度數。參考解答一(利用三角函數)參考解答二:使用國中所習方法圖解法(Proof Without Words)首先,構造類題:試求下圖中的九個角的度數和。提示:一題多解範

52、例設 都是小於1的正實數,試證: 參考解答(一)利用不等式參考解答二:轉化成幾何題作一正三角形 其邊長為1; 分別在三邊 、 及 上各取一點 使得因此 的面積必 大於 三個面積之和,即類題:已知正數 與 滿足條件:試證:參考解答(一):代數法參考解答(二):圖解法如圖,另解:作一個邊長為 的正方形,如圖所示一題多解範例已知 為正實數且滿足條件: 試求: 與 的值。【參考解法一】直接求解因為【註】此解法可適用於 為三個實數。【參考解法二】數與形的連結-Proof Without Words(圖解法)如圖,由餘弦定理知, 因此 點為費瑪點,且 由面積公式知, 類題:若三正數 滿足下列條件 : 試求

53、 的值。 分析:轉化為幾何題從第一個方程式:由餘弦定理知,其二邊 和 的夾角為同理可由另二方程式知其角角分別為 和 參考解法:如圖轉化範例(另一例)若三正數 滿足下列條件 : 試求 的值。 範例已知正數 滿足 ,試求 的最小值。 參考解答一:利用柯西不等式同理可得參考解答二:利用幾何圖解法如圖, 問題:轉化範例,利用類比設 都是正數, (1)試證:下列三數 , , 中任意二數的和大於第三數。 (2)若以此三數為三角形之三邊長,試求此三角形面積。 思考策略轉化成幾何問題觀察此三數所代表的長度構造以a+b 及c+d 為邊長的長方形如圖,長方形 中,故三角形 的三邊長為設 為正數,試證:類題提示:

54、請構造一個三角形,使得上述三個根號數正好是其三邊長。參考解答:轉化為幾何題,利用餘弦定理。轉化-數學解題常用策略常數與變數的轉化例:已知 相異實數, 試解方程組 可能解法方法一:利用加減消去法 方法二:利用克拉瑪法則 試問:是否還有其他方法?轉化範例將 視為一元三次方程式的三個解:由根與係數知,類題:利用類比解法已知實數 滿足聯立方程組試求 的值。參考解法原方程組將 視為常數,則可得到 為下列 的方程式的四個根 將上式經化簡後可得故由根與係數關係知上題中如果二次方改成任意次 方,其方法亦同。趣味幾何題如下圖,正方形 中, 為其內部一點,使得試求 及正方形 的面積。參考解法另解欲求正方形 的面積

55、,如能先求 的度數,可利用餘弦定理求出正方形的邊長及面積。參考作法將此正方形依逆時方向旋轉90度, 又類題在正方形 中, 為內部一點, 使得 試求 、 及正方形的邊長。參考解法範例:數學歸納法之應用 試証:任意 個正方形,經過適當的切割(只能用圓規、直尺和剪刀)後,必可重拼成一個大正方形。(參考解答)利用數學歸納法, (1) 若二個正方形大小相同:(2)若二個正方形大小不同:. (逆命題)一個大正方形是否可切成個小正方形?(不能拼) 才可以 Prove ! 多3個 解: 設 , 試證:(1) (2) (3) 如何推廣上述問題?參考解答已知正方形邊長為1,試求圖形EFMN的面積。參考解法AMC

56、數學競賽範例一個正整數正好等於其四個最小正因數的平方和。試問可以整除該正整數的最大質數為何?答: 13參考解答設所求正整數為 ,由題意知, 正好等於其四個最小正因數的平方和, 所以 必為偶數。因此,設 的四個最小正因數為 ,又台南市國中數學競賽設 為正整數且滿足下列兩個條件:(1) 恰有6個相異的正因數:(2) ; 試詳列出所有可能的 值。參考解答顯然不可能。從一道競賽題談起問題:三角形之三邊長為 ,其中 .給定 值,試求滿足所有條件之所有可能的這樣之三角形個數,並求其規律。般特殊化 : 1, 2, 3, 4, 5, 6, 7, 8, 9 : 1, 2, 4, 6, 9, 12, 16, 20, 25其中 表示最大邊長為 的相異三角形(全等三角型不計)個數可歸納為:(1)(2) 的公式為操作題已知三個數 ,進行下面一次的操作:首先任取其中的二個數求其和,再除以 ;另外,求這二數的差再除以 ,而得到新的二個數。試問:能否經過若干次上述的操作,最後得到 ?試說明理由。參考解答設三數分別為 ,經過一次操作後得到新的三數 : 因為 即每操作一次,仍保持此三數的平方和不變

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论