




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学下册第18章 勾股定理综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,A,B两地距公路l的距离分别为AC、BD,BD4km,小华从A处出发到公路l上的点P处取一物品后去到B处,全程
2、共18km,已知PC5km,PD3km,则A处距离公路l(AC)()A13kmB12kmC8kmD8km2、如图,在ABC中,A90,AB6,BC10,EF是BC的垂直平分线,P是直线EF上的任意一点,则PAPB的最小值是( )A6B8C10D123、如图,以RtABC(ACBC)的三边为边,分别向外作正方形,它们的面积分别为S1S2S3,若S1S2S312,则S1的值是( )A4B5C6D74、若等腰三角形两边长分别为6和8,则底边上的高等于( )A2BC2或D105、已知直角三角形的斜边长为5cm,周长为12cm,则这个三角形的面积( )ABCD6、ABC中,A,B,C所对的边分别是a,b
3、,c下列条件中不能说明ABC是直角三角形的是( )Ab2- c2=a2Ba:b:c= 5:12:13CA:B:C = 3:4:5DC =A -B7、点P(3,4)到坐标原点的距离是( )A3B4C4D58、如图,在RtABC中,AB6,BC8,AD为BAC的平分线,将ADC沿直线AD翻折得ADE,则DE的长为( )A4B5C6D79、如图,有一个长、宽、高分別为2m、3m、1m的长方体,现一只蚂蚁沿长方体表面从A点爬到B点,那么最短的路径是( )A32mB3mC2mD25m10、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A1,B,C6,7,8D2,3,4第卷(非选择
4、题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在四边形ABCE中,BA,E90,点D在AB上,ADBD511,连接CD,若点D在CE的垂直平分线上且满足A2BDC,CE10,则线段AB的长为_2、如果正整数a、b、c满足等式a2+b2c2,那么正整数a、b、c叫做勾股数,某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为 _3、如图,在中,于点为线段上一点,连结,将边沿折叠,使点的对称点落在的延长线上若,则的面积为_4、把由5个小正方形组成的十字形纸板(如图)剪开,使剪成的若干块能够拼成一个大正方形最少只需要剪_刀5、如图,在等腰ABC中,BAC30
5、,ABAC,BC4,点P、Q、R分别为边BC、AB、AC上(均不与端点重合)的动点,PQR周长的最小值是_三、解答题(5小题,每小题10分,共计50分)1、如图1,直线与轴交于点,与轴交于点,点与点关于轴对称(1)求直线的函数表达式;(2)设点是轴上的一个动点,过点作轴的平行线,交直线于点,交直线于点,连接若,请直接写出点的坐标 ;若的面积为,求出点的坐标 ;若点为线段的中点,连接,如图2,若在线段上有一点,满足,求出点的坐标2、如图,在RtABC中,ACB90,BC是ABC中最短的边,边AC的长度比BC长10cm,斜边AB的长度比BC长度的2倍短10cm(1)求RtABC的各条边的长(2)求
6、AB边上的高(3)点D从点B出发在线段AB上以2cm/s的速度向终点A运动,设点D的运动时间为t(s)用含t的代数式表示线段BD的长为 ;当BCD为等腰三角形时,请求出t的值3、(问题背景)学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边,D是外一点,连接、,若,求的长该小组在研究如图2中中得到启示,于是作出如图3,从而获得了以下的解题思路,请你帮忙完善解题过程解:如图3所示,以为边作等边,连接,是等边三角形, , , (尝试应用)如图4,在中,以为直角边,A为直角顶点作等腰直角,求的长(拓展创新)如图5,在中,以为边向往外作等腰,连接,求的最大值4、如图,RtABC中,ACB9
7、0,分别以AC,BC,AB为边作正方形,面积分别记作S1、S2、S3求证:S1+S2S35、勾股定理是几何学中的明珠,它充满魅力,在现实世界中有着广泛的应用请尝试应用勾股定理解决下列问题:一架2.5m长的梯子AB斜靠在一竖直的墙AO上,这时BO为0.7m如果梯子的顶端A沿墙下滑0.4m,那么梯子底端B在水平方向上滑动了多少米?-参考答案-一、单选题1、B【分析】由题意根据勾股定理先求出BP,进而得出AP并根据勾股定理即可得出AC的长.【详解】解:,,,.故选:B.【点睛】本题考查勾股定理的实际应用,熟练掌握勾股定理即进行分析是解题的关键.2、B【分析】如图,由线段垂直平分线的性质可知PB=PC
8、,则有PA+PB=PA+PC,然后可知当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长【详解】解:如图,连接PC,EF是BC的垂直平分线,PB=PC,PA+PB=PA+PC,PAPB的最小值即为PAPC的最小值,当点A、P、C三点共线时,PA+PB取得最小值,即为AC的长,在RtABC中,A90,AB6,BC10,由勾股定理可得:,PAPB的最小值为8;故选B【点睛】本题主要考查垂直平分线的性质及勾股定理,熟练掌握垂直平分线的性质及勾股定理是解题的关键3、C【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案【详解】解:由勾股定理得:A
9、C2+BC2=AB2,S3+S2=S1,S1+S2+S3=12,2S1=12,S1=6,故选:C【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积4、C【分析】因为题目没有说明哪个边为腰哪个边为底,所以需要讨论,当6为腰时,此时等腰三角形的边长为6、6、8;当8为腰时,此时等腰三角形的边长为6、8、8;然后根据等腰三角形的高垂直平分底边可运用勾股定理的知识求出高【详解】解:ABC是等腰三角形,ABAC,ADBC,BDCD,边长为6和8的等腰三角形有6、6、8与6、8、8两种情况,当三边是6、6、8时,底边上的高AD2;当三边是
10、6、8、8时,同理求出底边上的高AD是故选C【点睛】本题主要考查了勾股定理和等腰三角形的性质,解题的关键在于能够利用分类讨论的思想求解5、C【分析】设该直角三角形的两条直角边分别为、,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出的值,根据直角三角形的面积公式计算即可【详解】解:设该直角三角形的两条直角边分别为、,根据题意可得:将两边平方,得该直角三角形的面积为故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键6、C【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可【详解】A. b2- c2=a2,根据勾股定理逆
11、定理可以判断,ABC是直角三角形,故不符合题意;B. a:b:c= 5:12:13,设,则,则,根据勾股定理逆定理可以判断,ABC是直角三角形,故不符合题意;C. A:B:C = 3:4:5,设A、B、C分别是,则,则,所以ABC是不直角三角形,故符合题意; D. C =A -B,又A+B+C=180,则A=90,是直角三角形,故不符合题意,故选C.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断7、D【分析】利用两点之间的
12、距离公式即可得【详解】解:点到坐标原点的距离是,故选:D【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键8、B【分析】在中利用勾股定理求出长,利用折叠性质:得到,求出对应相等的边,设DEx,在中利用勾股定理,列出关于的方程,求解方程即可得到答案【详解】解:AB6,BC8,ABC90,AC,AD为BAC的平分线,将ADC沿直线AD翻折得ADE,A、B、E共线,ACAE10,DCDE,BEAEAB1064,在RtBDE中,设DEx,则BD8x,BD2+BE2DE2,(8x)2+42x2,解得x5,DE5,故选:B【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角
13、形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键9、A【分析】将图形分三种情况展开,利用勾股定理求出两种情况下斜边的长进行比较,其值最小者即为正确答案【详解】解:如图(1),AB=(2+3)2+12=26(m);如图(2),AB=22+(1+3)2=20=25(m);如图(3),AB=32+(2+1)2=32(m), 322526,最短的路径是32m故选:A【点睛】本题主要考查了勾股定理的应用,两点之间线段最短,解题的关键在于能够把长方体展开,利用勾股定理求解10、A【分析】根据勾股定理的逆定理逐项判断即可得【详解】
14、解:A、,此项能构成直角三角形;B、,此项不能构成直角三角形;C、,此项不能构成直角三角形;D、,此项不能构成直角三角形;故选:A【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题关键二、填空题1、【分析】根据题意过点D作DGEC,CFAB,连接AC、DE,先证明ADEBCD和GDCFDC,进而设AD=BC=5x,AE= BD=11x,AF=y,则BF=16x-y,通过勾股定理建立方程求解即可.【详解】解:过点D作DGEC,CFAB,连接AC、DE,点D在CE的垂直平分线上,DGEC,DE=DC,AEC90,DGEC,EAD2BDC,BEAD,DE=DC,ADEBCD,AE=B
15、D,DGEC,CFAB,CD=CD,GDCFDC,又CE10,CG=CE,CF=CG=5, ADBD511,设AD=BC=5x,AE= BD=11x,AF=y,则BF=16x-y,由勾股定理AC2=AE2+CE2=CF2+AF2得到121x2+100=25+y2由勾股定理得BC2=CF2+BF2得到25x2=25+(16x-y)2联立可解得,.故答案为:.【点睛】本题考查全等三角形的判定与性质以及勾股定理的应用和垂直平分线性质,熟练掌握通过垂直平分线性质和角平分线性质构造全等三角形是解题的关键.2、79【分析】根据给出的数据找出规律:,由此求出的值,即可求出答案【详解】由题可得:,当时,故答案
16、为:79【点睛】本题考查勾股定理,根据题目给出的数据找出规律是解题的关键3、【分析】由勾股定理求得AC的长,由面积关系可求得CD的长,再由勾股定理可求得BD的长;由折叠的性质可得,由此面积关系可求得DE与BE的关系,从而可求得BE及AE的长,进而可求得结果【详解】,由勾股定理得:在RtBCD中,由勾股定理得:由折叠的性质可得,即解得:BE=4AE=ABBE=104=6故答案为:【点睛】本题考查了折叠的性质,勾股定理,三角形面积的计算,利用得出DE与BE的关系是关键4、2【分析】利用使剪成的若干块能够拼成一个大正方形,结合图形得出即可【详解】解:如图所示:由5个小正方形组成的十字形纸板(如图1)
17、剪开,使剪成的若干块能够拼成一个大正方形,正方形的边长为:最少只需剪2刀故答案为:2【点睛】此题主要考查了图形的剪拼,勾股定理及无理数的计算,结合利用勾股定理得到四边形四条边相等是解题关键5、【分析】过BC的中点P作AB,AC的对称点M,N,连接MN交AB与Q,交AC于R,则此时PQR周长最小,求出MQ,RQ,RN即可解决问题【详解】过点P作,的对称点M,N,连接交于Q,交于R,设交于点,则,周长为,当四点共线时,即当点P是的中点时,的周长最小,如图,同理,中,周长的最小值是故答案为:【点睛】本题是三角形综合题,考查了轴对称的性质,等边三角形的性质,等腰三角形的性质,含30度角的直角三角形的性
18、质,勾股定理,正确的作出辅助线是解题的关键三、解答题1、(1);(2),;点的坐标为,或,;点F的坐标,【分析】(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;(2)设点M(m,0),则点P(m,),则,由B(0,3),C(6,0),则,再由勾股定理得,则,由此求解即可;设点, ,点在直线上,进行求解即可;过点作交于,过点作轴于,根据,是等腰直角三角形,再证,得出,根据点为线段的中点,求出,设,则, 待定系数法求直线的解析式为,点在上,代入得方程解方程即可【详解】(1)对于,令,令,点与点A关于轴对称,设直线的解析式为,直线的解析式为; (2)设点,是直
19、角三角形,故答案为:; 设点,点在直线上,点在直线上,的面积为,或,; 过点作交于,过点作轴于,是等腰直角三角形,点为线段的中点,设,则,则,设直线的解析式为,解得:,直线的解析式为,点在上,解得:,点的坐标为,【点睛】本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式2、(1)AB=50cm,BC=30cm,AB=40cm,(2)AB边上的高为24cm;(3)2t;当BCD为等腰三角形时, t的值为15s或18s或s【分析】(1)设,则,然后利用勾股定理求解即可;(2)过点C作CEAB于E,然后利用
20、面积法求解即可;(3)根据路程=速度时间即可得到答案;分三种情况:当时,当时,当时,讨论求解即可【详解】解:(1)设,则,ACB=90,解得或(舍去),则,;(2)如图所示,过点C作CEAB于E,AB边上的高为;(3)由题意得:,故答案为:;如图3-1所示,当时,解得;如图3-2所示,当时,过点C作CEAB于E,由(2)得,解得;如图3-3所示,当时,过点C作CEAB于E,由(2)得,设,在直角CEB中,在直角CDE中,解得,解得;综上所述,当的值为15或18或时,BCD为等腰三角形【点睛】本题主要考查了勾股定理,三角形面积,等腰三角形的性质,熟知勾股定理是解题的关键3、 问题背景;尝试应用;拓展创新【分析】问题背景根据等式的性质,三角形全等的判定与性质,勾股定理填空即可;尝试应用以为直角边,A为直角顶点作等腰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络安全保障协议:企业数据保护合规
- 跨境物流服务合同范本
- 植物学试题(附参考答案)
- 物流园区运营服务合同指南
- 供应链管理服务合同模板
- 办公空间租赁合同协议书范本
- 基于合同视角的建筑工程招投标分析论文
- 夫妻合同纠纷:离婚债务分配协议
- 标准农民工劳动合同范本指南
- 美术颜色的课件
- XX化工企业停工安全风险评估报告
- 2025年济源职业技术学院单招职业技能测试题库学生专用
- 全国川教版信息技术八年级下册第二单元第3节《评价文创作品》教学设计
- 急诊科护理创新管理
- 临边防护安全培训课件
- 专题04-完形填空2023年高考英语三模试题分项汇编(新高考八省专用)-(原卷版)
- 物理治疗学(人卫三版)
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传海报
- 湖北省黄冈八模2025届高三第一次模拟考试数学试卷含解析
- 道路工程交通安全设施施工方案及保障措施
- 花粉购销合同范例
评论
0/150
提交评论