2022年最新沪科版八年级数学下册第19章-四边形专题训练练习题(精选)_第1页
2022年最新沪科版八年级数学下册第19章-四边形专题训练练习题(精选)_第2页
2022年最新沪科版八年级数学下册第19章-四边形专题训练练习题(精选)_第3页
2022年最新沪科版八年级数学下册第19章-四边形专题训练练习题(精选)_第4页
2022年最新沪科版八年级数学下册第19章-四边形专题训练练习题(精选)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、沪科版八年级数学下册第19章 四边形专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中

2、点,连接GH,则GH的长为()ABC4.5D4.32、下列条件中,不能判定四边形是平行四边形的是( )A两组对边分别相等B一组对边平行,另一组对边相等C两组对角分别相等D一组对边平行且相等3、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或24、下列新冠疫情防控标识图案中,中心对称图形是( )ABCD5、如图,小明从A点出发,沿直线前进10米后向左转36,再沿直线前进10米,

3、再向左转36照这样走下去,他第一次回到出发点A点时,一共走的路程是()A180米B110米C120米D100米6、下列说法不正确的是( )A三角形的外角大于每一个与之不相邻的内角B四边形的内角和与外角和相等C等边三角形是轴对称图形,对称轴只有一条D全等三角形的周长相等,面积也相等7、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D48、已知正多边形的一个外角等于45,则该正多边形的内角和为()A135B360C1080D1440

4、9、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A2.5B2CD10、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30后沿直线前进10m到达点照这样走下去,小明第一次回到出发点A,一共走了( )米A80B100C120D140第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落在三角形所在平面内的点为A1,则BDA1的度数为 _2、已知一直角三角

5、形的两直角边长分别为6和8,则斜边上中线的长度是_3、过五边形一个顶点的对角线共有_条4、如图,四边形和四边形都是边长为4的正方形,点是正方形对角线的交点,正方形绕点旋转过程中分别交,于点,则四边形的面积为_5、如图,矩形ABCD中,AC、BD相交于点O且AC=12,如果AOD=60,则DC=_ 三、解答题(5小题,每小题10分,共计50分)1、(1)如图a,矩形ABCD的对角线AC、BD交于点O,过点D作DPOC,且DP=OC,连接CP,判断四边形CODP的形状并说明理由(2)如图b,如果题目中的矩形变为菱形,结论应变为什么?说明理由(3)如图c,如果题目中的矩形变为正方形,结论又应变为什么

6、?说明理由2、如图,在四边形ABCD中,ADBC,AD=2BC,点E是AC的中点,请仅用无刻度的直尺分别按下列要求画图(不写画法,保留画图痕迹)(1)在图1中,画出ACD的边AD上的中线CM;(2)在图2中,若AC=AD,画出ACD的边CD上的高AN3、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB3,ABC60,求EF的长4、如图,在RtABC中,ACB90,D为AB中点,(1)试判断四边形BDCE的形状,并证明你的结论;(2)若ABC30,AB4,则四边形BDCE的面积为 5、我

7、们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形(1)如图,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD 正四边形;(填“是”或“不是”)(2)如图,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由-参考答案-一、单选题1、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从

8、而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解2、B【分析】直接利用平行四边形的判定定理判定,即可求得答案;注意掌握排除法在选择题中的应用【详解】解:A、两组对边分别相等是平行四边形;故本选项不符合题意;B、一组对

9、边平行,另一组对边相等的四边形是平行四边形或等腰梯形;故本选项符合题意C、两组对角分别相等的四边形是平行四边形;故本选项不符合题意;D、一组对边平行且相等是平行四边形;故本选不符合题意;故选:B【点睛】此题考查了平行四边形的判定注意熟记平行四边形的判定定理是解此题的关键3、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP=6厘米,BP=10-6=4厘

10、米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用4、A【分析】一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形根据中心对称图形的概念对各选项分析判断即可得解【详解】解:选项B、C、D不能找到

11、这样的一个点,使图形绕某一点旋转180后与原图重合,所以不是中心对称图形;选项A能找到这样的一个点,使图形绕某一点旋转180后与原图重合,所以是中心对称图形;故选:A【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合5、D【分析】根据题意,小明走过的路程是正多边形,先用360除以36求出边数,然后再乘以10m即可【详解】解:每次小明都是沿直线前进10米后向左转36,他走过的图形是正多边形,边数n=36036=10,他第一次回到出发点A时,一共走了1010=100米故选:D【点睛】本题考查了多边形的边数的求法,根据题意判断出小亮走过的图形是正多边形是解题

12、的关键6、C【分析】根据三角形外角的性质,四边形内角和定理和外角和定理,等边三角形的对称性,全等三角形的性质判断即可【详解】三角形的外角大于每一个与之不相邻的内角,正确,A不符合题意;四边形的内角和与外角和都是360,四边形的内角和与外角和相等,正确,B不符合题意;等边三角形是轴对称图形,对称轴有三条,等边三角形是轴对称图形,对称轴只有一条,错误,C符合题意;全等三角形的周长相等,面积也相等,正确,D不符合题意;故选C【点睛】本题考查了三角形外角的性质,四边形的内角和,外角和定理,等边三角形的对称性,全等三角形的性质,准确相关知识是解题的关键7、C【分析】取线段AC的中点G,连接EG,根据等边

13、三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的

14、判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键8、C【分析】先利用正多边形的每一个外角为 求解正多边形的边数,再利用正多边形的内角和公式可得答案.【详解】解: 正多边形的一个外角等于45, 这个正多边形的边数为: 这个多边形的内角和为: 故选C【点睛】本题考查的是正多边形内角和与外角和的综合,熟练的利用正多边形的外角的度数求解正多边形的边数是解本题的关键.9、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示

15、的实数即可【详解】解:四边形OABC是矩形,在中,由勾股定理可知:, ,弧长为,故在数轴上表示的数为,故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键10、C【分析】由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.【详解】解:由 可得:小明第一次回到出发点A,一个要走米,故选C【点睛】本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”

16、是解本题的关键.二、填空题1、80【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA118010080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键2、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点

17、睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键3、2【分析】画出图形,直接观察即可解答【详解】解:如图所示,过五边形一个顶点的对角线共有2条;故答案为:2【点睛】本题考查了多边形对角线的条数,解题关键是明确过n边形的顶点可引出(n-3)条对角线4、4【分析】过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,把四边形的面积转化为正方形OGBH的面积,等于正方形ABCD面积的【详解】如图,过点O作OGAB,垂足为G,过点O作OHBC,垂足为H,四边形ABCD的对角线交点为O,OA=OC,ABC=90,AB=BC,OGBC,OHAB,四边形OG

18、BH是矩形,OG=OH=,GOH=90,=4,FOH+FOG=90,EOG+FOG=90,FOH=EOG,OGE=OHF=90,OG=OH,OGEOHF,=4,故答案为:4【点睛】本题考查了正方形的性质,三角形的全等与性质,补形法计算面积,熟练掌握正方形的性质,灵活运用补形法计算面积是解题的关键5、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出AOD是等边三角形,再根据勾股定理解答即可【详解】解:四边形ABCD是矩形,OAODAC126,ADC=90,AOD60,AOD是等边三角形,ADOA6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据

19、矩形的性质得出AOD是等边三角形三、解答题1、(1)四边形CODP是菱形,理由见解析;(2)四边形CODP是矩形,理由见解析;(3)四边形CODP是正方形,理由见解析【分析】(1)先证明四边形CODP是平行四边形,再由矩形的性质可得OD=OC,即可证明平行四边形OCDP是菱形;(2)先证明四边形CODP是平行四边形,再由菱形的性质可得DOC=90,即可证明平行四边形OCDP是矩形;(3)先证明四边形CODP是平行四边形,再由正方形的性质可得BDAC,DO=OC,即可证明平行四边形OCDP是正方形;【详解】解:(1)四边形CODP是菱形,理由如下:DPOC,且DP=OC,四边形CODP是平行四边

20、形,又四边形ABCD是矩形,OD=OC,平行四边形OCDP是菱形;(2)四边形CODP是矩形,理由如下:DPOC,且DP=OC,四边形CODP是平行四边形,又四边形ABCD是菱形,BDAC,DOC=90,平行四边形OCDP是矩形;(3)四边形CODP是正方形,理由如下:DPOC,且DP=OC,四边形CODP是平行四边形,又四边形ABCD是正方形,BDAC,DO=OC,DOC=90,平行四边形CODP是菱形,菱形OCDP是正方形【点睛】本题主要考查了矩形的性质与判定,菱形的性质与判定,正方形的性质与判定,解题的关键在于能够熟练掌握特殊平行四边形的性质与判定条件2、(1)见解析(2)见解析【分析】

21、(1)连接BE并延长交AD于M,易得四边形BCDM为平行四边形,再根据三角形中位线判断M点为AD的中点,然后连接CM即可;(2)连接BE并延长交AD于M,M点为AD的中点,再连接CM、DE,它们相交于F,连接AF并延长交CD于N,则ANCD(1)如图,CM即为所求(2)如图,AN即为所求【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了等腰三角形的性质3、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定ABEFCE

22、,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证ABE是等边三角形,可得ABAEEF3【详解】解:(1)四边形ABFC是矩形,理由如下:四边形ABCD是平行四边形,BAECFE,ABEFCE,E为BC的中点,EBEC,在ABE和FCE中,ABEFCE(AAS),ABCF,四边形ABFC是平行四边形,ADBC,ADAF,BCAF,四边形ABFC是矩形(2)四边形ABFC是矩形,BCAF,AEEF,BECE,AEBE,ABC60,ABE是等边三角形,ABAE3,EF3【点睛】本题考查了平行四边形的性质与判定

23、,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键4、(1)四边形是菱形,证明见解析;(2)【分析】(1)先证明四边形是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明从而可得结论;(2)先求解 再求解的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形是菱形,理由如下: , 四边形是平行四边形, ACB90,D为AB中点, 四边形是菱形.(2) ABC30,AB4,ACB90, D为AB中点, 四边形是菱形, 故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.5、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论