




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级数学下册第18章 勾股定理同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,为坐标原点,点,点,且满足若的面积为,则的值不可能为( )A18B46C82D552、如图,在R
2、tABC中,ABC90,AB6,BC3,BD是ABC的中线,过点C作CPBD于点P,图中阴影部分的面积为( )ABCD3、如图,长方体的底面边长分别为1cm和3cm,高为6cm如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要( )A8 cmB10 cmC12 cmD15 cm4、如图,四边形ABCD中,B90,CD2,AE平分BAD,DE平分ADC,AED120,设ABx,CEy,则下列式子可以表示线段AD长的是()Ax+y+Bx+y+2Cx+y+2Dx+y+5、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开8m后,下端刚好接触到地
3、面,则学校旗杆的高度为( )AmBmCmDm6、下列各组数据中,能构成直角三角形的三边的长的一组是()A1,2,3B4,5,6C5,12,13D13,14,157、如图,在RtABC中,AB6,BC8,AD为BAC的平分线,将ADC沿直线AD翻折得ADE,则DE的长为( )A4B5C6D78、下列四组数中,是勾股数的是( )A5,12,13B,C1,D7,24,269、一个直角三角形有两边长为3cm,4cm,则这个三角形的另一边为( )A5cmBcmC7cmD5cm或cm10、有下列四个命题是真命题的个数有( )个垂直于同一条直线的两条直线互相垂直;有一个角为的等腰三角形是等边三角形;三边长为
4、,3的三角形为直角三角形;顶角和底边对应相等的两个等腰三角形全等A1B2C3D4第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,等腰RtABC和等腰RtADE的腰长分别为4和2,其中BACDAE90,点M为边DE的中点,若等腰RtADE绕点A旋转,则点B到点M的距离最小值为_2、如图,中,点P是直线AB上一点,当时,的面积_3、如图每个小方格都是边长为1的小正方形,则正方形A的面积是_,正方形B的面积是_,正方形C的面积边长为7的正方形与4个直角边为_的直角三角形的面积差为_ 4、已知在ABC中,AB,AC2,BC边上的高为,那么BC的长是_5、填空:(1)如图,
5、圆柱的侧面展开图是_,点B的位置应在长方形的边CD的_,点A到点B的最短距离为线段_的长度(2)AB_三、解答题(5小题,每小题10分,共计50分)1、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4)(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当PAM的面积与长方形OACB的面积相等时,求点P的坐标2、在平面直角坐标系xOy中,点A在y轴上,点B在x轴上(1)在线段OA上找一点P,使得PA2-PO2=OB2,用直尺和圆规找出点P;(2)若A的坐标(0
6、,6),点B的坐标(3,0),求点P的坐标 3、已知在中,P是的中点,B是延长线上的一点,连接,(1)如图1,若,求的长;(2)过点D作,交的延长线于点E,如图2所示,若,求证:;(3)如图3,若,是否存在实数m,使得当时,?若存在,请直接写出m的值;若不存在,请说明理由4、如图1,在平面直角坐标系中,已知直线AC:y2x6,交直线AO:yx于点A(1)直接写出点A的坐标_;(2)若点E在直线AC上,当SAOE6时,求点E的坐标;(3)如图2,若点B在x轴正半轴上,当BOC的面积等于AOC的面积一半时,求ACOBCO的大小5、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=O
7、B(1)求两个函数的解析式;(2)求AOB的面积-参考答案-一、单选题1、D【分析】先根据两点之间的距离公式和可得一个关于的等式,再根据三角形的面积公式可得,然后分和两种情况,利用完全平方公式进行变形运算即可得【详解】解:由题意得:,即,的面积为,即,(1)当时,则,由得:或,当时,则,此时;当时,此时;(2)当时,则,所以由得:,此时;综上,的所有可能的值为18,46,82,故选:D【点睛】本题考查了两点之间的距离公式、因式分解、完全平方公式等知识点,正确分两种情况讨论是解题关键2、C【分析】根据勾股定理求出AC=,由三角形中线的性质得出,从而求出PC的长,再运用勾股定理求出BP的长,得DP
8、的长,进一步可求出图中阴影部分的面积【详解】解:在RtABC中,ABC90,AB6,BC3, 又 BD是ABC的中线, 在RtPBC中,BC3, 故选:C【点睛】本题考查了勾股定理以及中线与三角形面积的关系,求出是解答本题的关键3、B【分析】立体图形展开后,利用勾股定理求解【详解】解:将长方体沿着边侧面展开,并连接,如下图所示:由题意及图可知:, 两点之间,线段最短,故的长即是细线最短的长度,中,由勾股定理可知:,故所用细线最短需要 故选:B【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此
9、类问题的关键4、B【分析】在AD上截取AGAB,DHDC,连接EG、EH,证明ABEAGE(SAS),DEHDEC(SAS),由全等三角形的性质得出BEGE,AEBAEG,CEHE,CEDHED,证明EGH是含30度角的直角三角形,根据勾股定理即可得出结论【详解】解:如图,在AD上截取AGABx,DHDC,连接EG、EH,AE平分BAD,BAEGAE,在ABE和AGE中,ABEAGE(SAS),AEBAEG,AGEB90,DE平分ADC,同理可证:DEHDEC(SAS),DEHDEC,EHECy,AED120,AEB+CED18012060,AEG+HED60,GEH60,EGF90, EHG
10、30,EGEHy,GHy,ADAG+GH+HDx+y+2故选:B【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质,角平分线的性质,勾股定理等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键5、C【分析】根据题意设旗杆的高AB为xm,则绳子AC的长为(x+2)m,再利用勾股定理即可求得AB的长,即旗杆的高【详解】解:根据题意画出图形如下所示:则BC8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在RtABC中,AB2+BC2AC2,即x2+82(x+2)2,解得x15,故AB15m,即旗杆的高为15m故选:C【点睛】此题考查了学生利用勾股定理解决实际问题
11、的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图6、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题【详解】解:A.,不是直角三角形,故A不符合题意;B. ,不是直角三角形,故B不符合题意;C. ,是直角三角形,故C不符合题意;D. ,不是直角三角形,故D不符合题意,故选:C【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键7、B【分析】在中利用勾股定理求出长,利用折叠性质:得到,求出对应相等的边,设DEx,在中利用勾股定理,列出关于的方程,求解方程
12、即可得到答案【详解】解:AB6,BC8,ABC90,AC,AD为BAC的平分线,将ADC沿直线AD翻折得ADE,A、B、E共线,ACAE10,DCDE,BEAEAB1064,在RtBDE中,设DEx,则BD8x,BD2+BE2DE2,(8x)2+42x2,解得x5,DE5,故选:B【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键8、A【分析】根据勾股数的定义:有、三个正整数,满足,称为勾股数由此判定即可【详解】解:、,是勾股数,符合题意;、,不是勾股数,不符
13、合题意;、,不是整数,不是勾股数,不符合题意;、,不是勾股数,不符合题意故选:【点睛】本题考查了勾股数,熟练掌握勾股数的定义是解题的关键9、D【分析】根据勾股定理解答即可【详解】解:设这个三角形的另一边为xcm,若x为斜边时,由勾股定理得:,若x为直角边时,由勾股定理得:,综上,这个三角形的另一边为5cm或cm,故选:D【点睛】本题考查勾股定理,利用分类讨论思想是解答的关键10、C【分析】根据等边三角形的判定定理、勾股定理逆定理、全等三角形的判定判断即可【详解】:在同一平面内,垂直于同一条直线的两条直线互相垂直,故错误;:有一个角为的等腰三角形是等边三角形,故正确;:,边长为,3的三角形为直角
14、三角形,故正确;:顶角相等则等腰三角形三个角都对应相等,再加上底边对应相等,这两个等腰三角形全等,故正确;综上是真命题的有3个;故选:C【点睛】本题考查命题的真假,结合等边三角形的判定、勾股定理逆定理、全等三角形的判定等知识综合判断是解题的关键二、填空题1、#【分析】连接AM,当A、B、M三点不共线时,此时一定有,当三点共线且M点位于A、B之间时,此时有,最终有,最后即可求得答案【详解】解:连接AM,如下图所示:点M为边DE的中点,且RtADE为等腰三角形,在RtADE中,由勾股定理可知:,故有,当A、B、M三点不共线时,由三角形的三边关系可知:此时一定有,当三点共线且M点位于A、B之间时,此
15、时有,故答案为:【点睛】本题主要是考查了三角形的三边关系以及等腰直角三角形的性质和勾股定理,熟练利用等腰直角三角形的性质以及勾股定理求边长,利用三边关系求最值,是解决该题的关键2、或【分析】分点P在AB延长线上和点P在线段AB上两种情况讨论,利用等腰三角形的判定和性质以及勾股定理求解即可【详解】解:,AB=,当点P在AB延长线上时,过点C作CDAB于点D,如图:BPC=ABC,且BPC+BCP=ABC,BPC=BCP,BC=BP=1,ABC的面积为:ABCD=BCAC,CD=,BPC的面积=PBCD=;当点P在线段AB上时,过点C作CDAB于点D,延长AB到Q,使BQ=BC=1,连接CQ,如图
16、:BQ=BC,BQC=BCQ,BQC=ABC,BPC=ABC,BPC=BQC,CP=CQ,CDAB,PD=DQ,由得CD=,BD=,PB=PD+BD=DQ+BD=BQ+2BD=,BPC的面积=PBCD=;综上,BPC的面积为或故答案为:或【点睛】本题考查了等腰三角形的判定和性质,勾股定理,三角形的外角性质,解答本题的关键是明确题意,找出所求问题需要的条件3、9 16 3和4 25 【分析】利用网格求各图形的面积,利用面积和差填空即可【详解】解:正方形A的面积是,正方形B的面积是,正方形C的面积边长为7的正方形与4个直角边为3和4的直角三角形的面积差为;故答案为:9;16;3和4;25【点睛】本
17、题考查了网格面积问题,解题关键是准确识图,熟练运用网格求面积4、4cm或2cmcm或4cm【分析】首先应分两种情况进行讨论,C是锐角和钝角两种情况在直角ABD和直角ACD中,利用勾股定理求得BD,CD的长,当C是锐角时,BCBD+CD;当C是钝角时,BCBDCD,据此即可求解【详解】解:在直角ABD中,在直角ACD中, 当C是锐角时(如图1),D在线段BC上,BCBD+CD3+14;当C是钝角时,D在线段BC的延长线上时(如图2),BCBDCD312cm则BC的长是4cm或2cm故答案是:4cm或2cm【点睛】本题主要考察了勾股定理的应用,分类讨论三角型的形状是解题的关键5、长方形【分析】(1
18、)根据圆柱的展开图特点和两点之间,线段最短求解即可;(2)根据勾股定理求解即可【详解】解:(1)如图,圆柱的侧面展开图是长方形,点B的位置应在长方形的边CD的中点处,点A到点B的最短距离为线段AB的长度故答案为:长方形;中点处;AB;(2)由勾股定理得: 故答案为:【点睛】本题主要考查了圆柱的侧面展开图,两点之间线段最短,勾股定理,熟知相关知识是解题的关键三、解答题1、(1);(2)5;(3)点P的坐标为(,)或(,)【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由勾股定理求出AB的长,再结合线段垂直平分线的性
19、质,可得AMBM,OMOBBM,再次利用勾股定理得出AM的长;(3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;(方法二)由PAM的面积与长方形OACB的面积相等可得出SPAM的值,设点P的坐标为(x,x4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解【详解】解:(1)四边形AOBC为长方形,且点C的坐标是(8,4),AOCB4,OBAC8,A点坐标为(0,4),B点坐标为(8,0)设对角线AB所在直线的函数关系式为ykxb,则有,解得:,对角线AB所
20、在直线的函数关系式为yx4(2)AOB90,勾股定理得:AB4,MN垂直平分AB,BNANAB2MN为线段AB的垂直平分线,AMBM设AMa,则BMa,OM8a,由勾股定理得,a242(8a)2,解得a5,即AM5(3)(方法一)OM3,点M坐标为(3,0)又点A坐标为(0,4),直线AM的解析式为yx4点P在直线AB:yx4上,设P点坐标为(m,m4),点P到直线AM:xy40的距离hPAM的面积SPAMAMh|m|SOABCAOOB32,解得m ,故点P的坐标为(,)或(,)(方法二)S长方形OACB8432,SPAM32设点P的坐标为(x,x4)当点P在AM右侧时,SPAMMB(yAyP
21、)5(4x4)32,解得:x,点P的坐标为(,);当点P在AM左侧时,SPAMSPMBSABMMByP105(x4)1032,解得:x,点P的坐标为(,)综上所述,点P的坐标为(,)或(,)【点睛】本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个2、(1
22、)见解析;(2)(0,)【分析】(1)连接AB,作AB的垂直平分线交OA于点P,连接PB,可得PA=PB,根据勾股定理可得PA2-PO2=OB2即可;(2)根据A的坐标(0,6),点B的坐标(3,0),可得OA=6,OB=3,所以PA=PB=OA-OP=6-OP,根据勾股定理可得PB2-OP2=OB2,进而可得OP的长,得点P的坐标【详解】解:(1)如图,点P即为所求;(2)A的坐标(0,6),点B的坐标(3,0),OA=6,OB=3,PA=PB=OA-OP=6-OP,PB2-OP2=OB2,(6-OP)2-OP2=32,解得OP=,点P的坐标为(0,)【点睛】本题考查了作图-复杂作图,坐标与
23、图形性质,勾股定理,解决本题的关键是掌握线段垂直平分线的性质3、(1)4;(2)见解析;(3)存在,【分析】(1)根据,可得B=30,根据30直角三角形的性质可得,根据,可证是等边三角形,得出,根据P是的中点,得出设,则,根据勾股定理,求(已舍去)即可(2)连接,根据DEAC,可得先证CPADPE(AAS),再证是等边三角形,可证CABEBA(SAS),得出即可;(3)存在这样的m,m=作DEAC交的延长线于E,连接,根据点P为CD中点,可得CP=DP,根据DEAC,可得CAP=DEP,先证APCEPD(AAS),得出,当时,作于F,可得,可得,得出再证ACBBEA(SAS),得出即可【详解】
24、(1)解:,B=180-CAB-ACB=180-90-60=30,是等边三角形,P是的中点,在中,设,则,(已舍去),(2)证明:如图1,连接,DEAC,在和中,CPADPE(AAS),又DEAC,是等边三角形,在CAB和EBA中,CABEBA(SAS),(3)存在这样的m,m=解:如图3,作DEAC交的延长线于E,连接,点P为CD中点,CP=DP,DEAC,CAP=DEP,在APC和EPD中,APCEPD(AAS),AP=EP,当时,作于F,点E,F重合,在ACB和BEA中,ACBBEA(SAS),存在,使得【点睛】本题考查线段中点,等边三角形性质,勾股定理,解一元二次方程,三角形全等判定与性质,等腰直角三角形判定与性质,掌握线段中点,等边三角形性质,勾股定理,解一元二次方程,三角形全等判定与性质,等腰直角三角形判定与性质是解题关键4、(1)A(4,2);(2)E(2,2)或(6,6);(3)ABODBO45【分析】(1)联立方程组可求解;(2)设点E的坐标为(a,b),分两种情况讨论:当点E在A点上方时;当点E在A点下方时求解即可;(3)由面积关系可求OB的长,由全等三角形的性质和等腰直角三角形的性质可求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 路肩整体施工方案
- 校园标线施工方案
- 光纤更换施工方案
- 购房定金合同的详细条款
- 大堤拆除施工方案
- 集美大桥 施工方案
- 围封下荒漠草原典型群落植物-土壤碳氮同位素及化学计量特征
- 三维点云连续缺失信息重建技术研究与应用
- 巴氏芽孢杆菌对黄河滩区镉污染土壤修复及冬小麦镉富集影响
- 肝脏锌原卟啉的富集及其稳定性的研究
- (正式版)JTT 1490-2024 港口安全设施分类与编码
- 21《杨氏之子》公开课一等奖创新教案
- 车辆应急预案方案恶劣天气
- 【部编版】语文五年级下册第五单元《交流平台 初试身手》精美课件
- 枇杷文化知识讲座
- 浙江伟锋药业有限公司年产100吨拉米夫定、50吨恩曲他滨、30吨卡培他滨技改项目环境影响报告
- 公路养护安全作业规程-四级公路养护作业控制区布置
- 八年级家长会领导讲话4篇
- 美世国际职位评估体系IPE3.0使用手册
- 焦虑抑郁患者护理课件
- 户外招牌安全承诺书
评论
0/150
提交评论