版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、試誤型史坦那樹演算法及電子設計自動化的應用Obstacle-Avoiding Heuristics for Steiner Tree Problem in EDA報 告 人:林琮徨指導教授:黃元欣 博士 詹景裕 博士 1OutlineIntroduction Steiner Tree Problem & X ArchitectureHigher Geometry Maze Routers Algorithm (HGMR Algorithm)Lous Steiner Tree AlgorithmLins Steiner Trees(ST) without Obstacles AlgorithmL
2、ins Steiner Trees exist Local refinement without Obstacles AlgorithmLins Steiner Trees with Obstacles AlgorithmLins Steiner Trees exist Local refinement with Obstacles AlgorithmThe Proposed Algorithm Example CompareThe Proposed Algorithm Compare TableConclusionsFuture Studies2Introduction Steiner Tr
3、ee ProblemSteiner vertexvertices to be interconnectedIn Euclidean domainGiven a set of n vertices on the plane, the Steiner Minimum Tree problem is to find a tree in the plane, of minimum total wire length, which connects the given set of vertices.3X ArchitectureA new interconnect architecture is di
4、fferent from “Manhattan” architecture.X Architecture rotates the primary direction of the interconnect in the fourth and fifth metal layers by 45 degrees.The advantages are discounting 20% routing wires and 30% via in VLSI layout. (Org: x initiative)4Steiner Tree Problem on X ArchitectureA simple ex
5、ample of Steiner Tree onX architecture4 Geometry Steiner Minimal Tree, Total Length = 7.656 5Higher Geometry Maze Routers AlgorithmStep 1. Wave Propagation Step 1.1Step 1.2Step 1.3Step 2. BacktrackingStep 2.1Step 2.2Step 2.36Lous Steiner Tree AlgorithmStep1:利用HGMR 演算法求出終端點之間的距離。Step2:利用Prime 的MST演算法
6、,算出連結所有終端點之MST樹長。Step3:對Map中每一點自由空間Ci,j,進行下列所述:(1) : 將此點當作一個終端點,利用MST演算法,算出加入此點後的總樹長。(2) : 將原本的樹長減去之後算出的樹長,紀錄在Ci,j中。Step4:Iteration * Define T : Tree 中的每個點的集合。(1) :建立Improvement Table (IT)。(2) :找尋IT中最適合的Steiner vertex,將其加入T後,執行Step2Step4.。(3) :若是IT中找不到合適的Steiner vertex (IT值 0) ,則演算結束。7介紹米字型延伸(A2)(A1
7、)(A3)(A5)(A4)(A6)8多點同時進行米字型延伸找出所有可能的Steiner vertex(B2) 點對點(B1) (點對點)9Lins Steiner Tree without Obstacles AlgorithmStep1:設定所有終端節點的米字型延伸範圍。 Step2:使用座標軸求所有終端節點間最短距離與米字型延伸的重疊點找 所有可能的Steiner vertex Step3:利用Prime 的MST演算法,算出連結所有終端點之MST樹長。Step4:對Map中指定範圍內的米字延伸交叉點Ci,j,進行下列所述:(1): 將此點當作一個終端點,利用MST演算法,算出加入此點後的
8、總樹長。(2): 將原本的MST樹長減去之後算出的MST樹長,紀錄在Ci,j中。Step5:Iteration * Define T : Tree 中的每個點的集合。(1) :建立Improvement Table (IT)。(2) :找尋IT中最適合的Steiner vertex,將其加入T後,執行Step4。(3) :若是IT中找不到合適的Steiner vertex(IT值 0) ,則演算結束。 10Lins Steiner Tree without Obstacles Algorithm建立Improvement Table (IT)。11Lins Steiner Tree witho
9、ut Obstacles Algorithm Improvement Table中,找不到合適的 Steiner vertex (IT值 0) ,則演算法結束。 12Lins ST exist Local Refinement without Obstacles AlgorithmStep1:設定所有終端節點的米字型延伸範圍。 Step2:使用座標軸求所有終端節點間最短距離與米字型延伸的重疊點找 所有可能的Steiner vertex Step3:利用Prime 的MST演算法,算出連結所有終端點之MST樹長。Step4:對Map中指定範圍內的米字延伸交叉點Ci,j,進行下列所述:(1):將此
10、節點當作一個終端點,找出距離此點線段長最小的三個終端點,並將此 三點相同值的所有節點,皆以最短路徑相連成tree。(2):將此tree加入目前的MST,刪除迴圈中最長的邊長,儲存修改此MST。(3):將原本的MST樹長減去之後算出的MST樹長,紀錄在Ci,j中。Step5: * Define T : Tree 中的每個點的集合。(1) :建立Improvement Table (IT)。Iteration(2) :找尋IT中數值最大Steiner vertex Ci,j (IT值 0),暫將其加入T,用原本的樹長 減去之後算出的樹長,結果大於0則修改T,刪除IT中的此Ci,j 。結果小於等於0
11、 ,則放棄此點,並且從IT中刪除Ci,j ,直到IT中為正的值都測試完為止。 (3) :若是IT中找不到合適的Steiner vertex(IT值 0) ,則演算結束。 13Local Refinement 示意圖14Lins Steiner Tree with Obstacles AlgorithmStep1:利用HGMR演算法求出終端點之間的距離Step2:使用Prime 的MST演算法,算出連結所有終端點之MST樹長。Step3:利用HGMR演算法洪氾求出每個自由節點避開障礙物到達地圖 盡頭(東、南、西、北、東南、東北、西南、西北)的最短路徑。Step4:將每個終端點使用米字型延伸後的重
12、疊點找出所有可能的Steiner vertex,直到整個地圖做完為止。Step5:對Map中的米字延伸交叉點Ci,j,進行下列所述:(1): 將此點當作一個終端點,利用Prime MST演算法,算出加入此點後的總樹長。(2): 將原本的MST樹長減去之後算出的MST樹長,紀錄在Ci,j中。Step6:Iteration * Define T : Tree 中的每個點的集合。(1) :建立Improvement Table (IT)。(2) :找尋IT中最適合的Steiner vertex,將其加入T後,執行演算法中的Step5 。(3) :若是IT中找不到合適的Steiner vertex(I
13、T值 0) ,則演算結束。 15針對地圖最北邊的列座標(0,0)(6,0)之中的所有節點,將上面的所有節點放入HGMR 演算法中的進行洪氾。wave propagation finishwave propagation16針對地圖最西邊的行座標(0,0) (0,6)與 最北邊的列座標(0,0)(6,0) 之中的所有節點,將上面的所有節點放入HGMR演算法中的進行洪氾。wave propagation finishwave propagation17Lins ST exist Local Refinement with Obstacles AlgorithmStep1:利用HGMR演算法洪氾求出
14、每個自由節點避開障礙物到達地圖 盡頭(東、南、西、北、東南、東北、西南、西北)的最短路徑。Step2:將每個終端點使用米字型延伸後的重疊點找出所有可能的Steiner vertex,直到整個地圖做完為止。Step3:利用Prime 的MST演算法,算出連結所有終端點之MST樹長。Step4:對Map中的米字延伸交叉點Ci,j ,進行Local Refinement:(1):將此節點當作一個終端點,找出距離此點線段長最小的三個終端點,並將此 三點相同值的所有節點,皆以最短路徑相連成tree。(2):將此tree加入目前的MST,刪除迴圈中最長的邊長,儲存修改此MST。(3):將原本的MST樹長減
15、去之後算出的MST樹長,紀錄在Ci,j中。Step5: * Define T : Tree 中的每個點的集合。(1) :建立Improvement Table (IT)。Iteration(2) :找尋IT中數值最大Steiner vertex Ci,j (IT值 0),暫將其加入T,用原本的樹長 減去之後算出的樹長,結果大於0則修改T,刪除IT中的此Ci,j 。結果小於等於0 ,則放棄此點,並且從IT中刪除Ci,j ,直到IT中為正的值都測試完為止。 (3) :若是IT中找不到合適的Steiner vertex(IT值 0) ,則演算結束。 18HGMR、Lous、Lins Algorith
16、m Length Example CompareResult of Lous(Length = 13.8)Result of HGMR(Length = 14.6)Result of Lins(Length = 13.8)19Result of HGMR(Length = 35.384)Result of Lous (Length = 34.142)Result of Lins(Length = 34.142)HGMR、Lous、Lins Algorithm Length Example Compare20Algorithm Compare TableLous SMT AlgorithmO(N
17、2 +p3N)O(N2)Jans SMT AlgorithmO(p2N)O(pN)Lins SMT without Obstacles AlgorithmO(p4)AlgorithmsItemsTime ComplexitySpace ComplexityO(pN+N+p4)O(pN)O(pN)O(N+p2)O(p2)p: # of terminal vertices, N: # of free spaceLins SMT without Obstacles Algorithm exist Local refinement Lins SMT with Obstacles AlgorithmLins SMT without Obstacles Algorithm exist Local refinement O(pN)O(pN)21ConclusionsLin的演算法之所以優於Lou,主要是在於Lou的演算法在 找尋Steiner vertex上花費過多的時間 去測試自由空間 上的每一個節點,Lin的演算法收尋Steiner Point僅在特定 縮小範圍內測試少許的米字延伸交叉點,花費較少的時間, 在無障礙物空間下只需要 ,有障礙物也只需要 Lin的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备管理员考核制度
- 监理标准化考核制度
- 发电企业班组考核制度
- 物业部门培训考核制度
- 模具钳工积分考核制度
- 家政保洁员考核制度
- 贵州省贵阳市、六盘水市、黔南州2026届生物高一下期末复习检测试题含解析
- 贵阳团校考试试题及答案
- 高频核酸检测面试题库及答案
- 县级融媒体中心AE特效师招聘笔试题库附答案
- 2026年1月浙江省高考(首考)地理试题(含答案)
- 2025年医院检验科主任年终述职报告
- 2026元旦主题班会:马年猜猜乐猜成语 (共130题)【课件】
- 全屋微水泥施工方案
- 西红柿栽培管理技术要点
- 《中国金融学》课件 第4章 信用形式与信用体系-课件
- 医用Mg-Zn-Mn合金:制备、强化工艺与性能的深度剖析
- 院长发现再审申请书范文
- 2024年湖南中烟考试真题及答案
- 超星尔雅《艺术鉴赏》课后答案彭吉象82045
- 国家教育事业发展“十五五”规划纲要
评论
0/150
提交评论