




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、期望传播算法及其推导个人博客:Notations:Diag(a):adiagonalmatrixwithabeingitsdiagonalelement.diag(A):avectorfromthediagonalelementoAf.ab:componentwisemultiply.a0b:componentwisedivide.RecapofVariationalInferenceAsmentionedin1,wehaveintroducedvariationalinferenceanditsapplicationinBayesianlinearregression.Inthisblog,
2、wefocusonavariationalinferenceperspectiveonexpectationpropagation.Insignalprocessingregime,theposteriordistributionisinterested.However,itisdifficulttoobtainowingtomanyhigh-dimensionintegral.Forexample,weconsiderlinearGaussianmodely=Hx+wItsposteriordistributiondenotedby(y|x)(x)p(x|y)=Jp(y|x)p(x)dxwh
3、erep(y|x)=pw(yHx).Unlessbothp(y|x)andp(x)areGaussian,wecantobtaintheclose-formofp(x|y)directly.Forthat,someapproximationsarenecessary.Tothidend,weuseq(x)toapproximatetheposteriordistributionandKL-divergencetomeasurethedifferencebetweenq(x)andp(x|y).Forsimplification,wegenerallyrestricttheformofq(x)f
4、romthedistributionfamilyS,i.e.,argminq(x)=g(x)GSDKL(P|q)Obviously,adistributionfamilywithexcellentpropertieswillgreatlyreducetheamountofcomputation.Fortunately,exponentialfamilyisoneofthat.ExponentialFamilyTheexponentialfamilyoverxparameteredbynisdefinedbyp(x;n)=h(x)g(n)exp(nTu(x)whereg(n)isnormaliz
5、ationconstant=1g(n)(/h(x)exp(nTu(x)dx)Takingthegradientofbothsideoftheabovew.r.t.n,wegetg(n)/h(x)exp(nTu(x)dx+g(n)/h(x)俗吩)U(x)dx=Rearrangingyields1一g(n)g(n)=g(n)/u(x)h(x)exp(nTu(x)dxfu(x)h(x)exp(nTu(x)dx=fh(x)exp(nTu(x)dx=Eu(x)UsingthefactSgg(n)=g(n)Vg(n),wehavelogg(n)=Eu(x)(*1)AVariationalInference
6、PerspectiveonEPForthedistributionofq(x)invariationalinference,Wetakeexponentialfamilydistributionintoaccountq(x)=h(x)g(n)exp(nTu(x)wethenwriteDKl(pIIq)asDKL(p|q)=logg(n)-nTEP(x)u(x)+constTakingthegradientofthebothsideofabovew.r.t.ntozeroyieldslogg(n)=Ep(x)u(x)Asmentionedin(*1),wethengetEq(x)u(x)=Ep(
7、x)u(x)Notethatifq(x)isGaussianN(x|”,S),wethenminimizetheKL-divergencebysettingMequaltothemeanofp(x)and乞equaltothevarianceofp(x).Weexploitthisresulttoobtainapraticalalgorithmforapproximateinference.Formanyprobabilitymodels,thejointdistributionofdataD=y,yNandhiddenvariables(mayincludingparameters)comp
8、risesaproductoffactorsintheformnp(d,&)=ifi(e)wheref0(6)=p(e)and九(&)=P(yn|。),(n!=0).Theposteriordistributionisgivenbyp(d,e)1nP(e|D)=p(D)=p(D)ifi(e)wherep(D)ispartitionfunctionorevidencefunction.rnP(D)=/ifi(e)deAswedeterminetheformofq(x)inq(e)=Ziqi(e)Thenq(e)isupdatedbyminimizingqi(e)argmin1=qi(e)DKL(
9、p(D)ninifi(e)llziqi(e)Actually,theapproximationispoorsinceeachfactorisindividuallyapproximated.Toremedythissituation,expectationpropagationmakesamuchbetterapproximationbyoptimizingeachfactorinturninthecontextofalloftheremainingfactors2.Below,wehavegiventhedetaileddescriptionsofEPstep-by-step.Stepi:I
10、nitializeallfactorsqi(e)fromdistributionfamilyS.inq(e)=Ziqi(e)Step2:Computeqj(e)denotedbyq(e)qj(e)=Cqj(e)whereCisnormalizationconstant.Step3:Updateqnewp)=Dkl(Zjfj(e)qj(e)|q(e)whereqnew(e)istheupdateofq(0).Step4:Updateqj(6)qnew(e)%=cqjwhereCisanormalizationconstant.Step5:_、step2.ApplicationinCommunic
11、ationWeconsiderstandardlinearGaussianmodel(SLM)y=Hx+wwherexWCNgeneratedfromM-QAMconstellationwithdistributionp(x)=ni=1p(xi).PassingthechannelHeCMxN(estimatedperfeetbeforhand)andaddingthewhiteGaussiannoisewNc(w|0,2I),theobservedsignalyisthenobtained.Weaimatdesigninganhigh-efficientsignaldetectorusing
12、EP.Basedonaboveknowledge,wewritetheposteriordistributionofthismodelasp(y|x)p(x)p(x|y)=p(y)gp(y|x)p(x)Noticethatsinceyisgiven,thenp(y)isregardedasaconstant.Wefurtherassumetheeachobserveddataareindependentofothers,i.e.,nMp(y|x)=Q=1p(a|x)Step1:Initializeq(x),theapproximationofq(x).Sincep(y|x)isGaussian
13、,wethenapproximatep(x)byGaussian,oneofexponentialfamily.q(x)=Nc(x|m,Diag(v)Itsmarginaldistributionisq(xj=Nc(xilmi,vi).Notethatq(xjhereisq/。)mentionedinsection3.Step2:Calculatethejointdistributionq(x,y)q(x,y)=q(x)p(y|x)=Nc(x|m,Diag(v)Nc(y|Hx,b2I)aNc(x|m,Diag(v)Nc(x|(HH)-1Hy,(-2HH)-1)xNc(xM,s)wherethe
14、lastequaitoncanbeobtainedbyGaussianproductlemmamentionedin2,andfollowingequations乞=(b-1HHH+Diag(10v)-1M=S(a2HHy+Diag(m0v)Here,wefurtherexploitNc(xj(ijQjj)toapproximatep(xj,y).Thisoperationignoresthecorrelationofxjandxj,sowewriteitasq(叼,y)=”上叼仏,Ejj).Step3:Computeqj(叼)q(叼,y)M(叼bjQjj)qj(xj)=q(xj)=Nc(xj
15、|mj,vj)xNc(xj|mjem,vjem)temtemwhere(mj,vj)canbeobtainedbyGaussianproductlemmatemvj=11(%Vj)temmj=/Pjvt叫j-1mjvjStep4:Updateq(xi,y)byminimizingKL-divergenceargmin1qnew(xj,y)=q(Xj,y)Sdkl(Cp(xj)qj(xj)|q(xj,y)丿Thisstepcanbewrittenastemtemxj=xj|mj,vjtemtemvj=Varxj|mj,vjtemtemP(xj)Nc(xjmj,vj),wheretheexpect
16、ationistakenoverfp(叼)Nc(叼mtem,vm)dxj.ItmeansthatXjandVjisthemeanandvarianeeofC1p(xj)qj(xj),respectively.Withmomentmatch,thereisqnew(叼,y)=Nc(xj|Xj,Vj)Notethatthemarginalposteriordistributionisapproximatedbyp(xj|y)Cp(xj)qj(xj).Step5:Updateq(xj),wethenupdateq(xj)byUsingtheGaussianproductlemma,wegetqnew(xj,y)q(xj)x(qj(xj)vj=1tem-vj-1mj=vj(temmjtemxjVj-vjStep6:step2.Totally,Withabovedescription,wesummarytheEPalgorithmasfollowing乞=(b-1HHH+Diag(10v
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二手电商平台信用体系建设与信用评级市场竞争力研究报告
- 2025年儿童教育游戏化课程设计与评价体系构建报告
- 山东聊城历年中考作文题与审题指导(2015-2020)
- 冷藏货车租赁及冷链物流服务协议书
- 茶园资源整合与品牌推广承包合同
- 智能家居产品设计与承包服务协议
- 跨区域交通枢纽车辆收费员派遣服务协议
- 餐饮企业合伙人合作协议书及知识产权保护条款
- 河南省南阳市六校2024-2025学年高一下学期第二次联考历史试题(含答案)
- 专业彩钢棚安装与售后保障服务合同
- 2024年山东省初中学业水平考试语文试题(文字版-含答案)
- 2024-2025教科版一年级下册科学期末考试卷附参考答案 (三套)
- 高血压药的类型
- 家规家训课件
- 《深圳音乐厅解析》课件
- 2025届河南省鹤壁市淇县第一中学高三下学期联合考试英语试题含解析
- 2025年中考语文作文押题预测课件
- 建办质202463号危险性较大的分部分项工程专项施工方案严重缺陷清单宣贯(雄安)
- 设备电气接线规范
- 胃管非计划拔管的原因分析及预防措施课件
- 射频基础知识
评论
0/150
提交评论