云南省剑川县2021-2022学年高考数学五模试卷含解析_第1页
云南省剑川县2021-2022学年高考数学五模试卷含解析_第2页
云南省剑川县2021-2022学年高考数学五模试卷含解析_第3页
云南省剑川县2021-2022学年高考数学五模试卷含解析_第4页
云南省剑川县2021-2022学年高考数学五模试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 “完全数”是一些特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.古希腊数学家毕达哥拉斯公

2、元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28不在同一组的概率为( )ABCD2在复平面内,复数对应的点的坐标为( )ABCD3为了研究国民收入在国民之间的分配,避免贫富过分悬殊,美国统计学家劳伦茨提出了著名的劳伦茨曲线,如图所示.劳伦茨曲线为直线时,表示收入完全平等.劳伦茨曲线为折线时,表示收入完全不平等.记区域为不平等区域,表示其面积,为的面积,将称为基尼系数.对于下列说法:越小,则国民分配越公平;设劳伦茨曲线对应的函数为,则对,均有;若某国家某年的劳伦

3、茨曲线近似为,则;若某国家某年的劳伦茨曲线近似为,则.其中正确的是:ABCD4已知集合,若,则实数的取值范围为( )ABCD5已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D46要得到函数的图象,只需将函数图象上所有点的横坐标( )A伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度7已知向量,设函数,则下列关

4、于函数的性质的描述正确的是A关于直线对称B关于点对称C周期为D在上是增函数8已知函数,若对任意的,存在实数满足,使得,则的最大值是( )A3B2C4D59设,分别为双曲线(a0,b0)的左、右焦点,过点作圆 的切线与双曲线的左支交于点P,若,则双曲线的离心率为( )ABCD10如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD11已知双曲线:的焦距为,焦点到双曲线的渐近线的距离为,则双曲线的渐近线方程为()ABCD12在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分

5、。13已知,则的值为_.14在正方体中,分别为棱的中点,则直线与直线所成角的正切值为_.15已知f(x)为偶函数,当x0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是_.16已知是夹角为的两个单位向量,若,则与的夹角为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.18(12分)在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为

6、极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.(1)当时,求M点的极坐标;(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.19(12分)已知椭圆的焦距为2,且过点(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,()证明:平分线段(其中为坐标原点);()当取最小值时,求点的坐标20(12分)如图,四棱锥的底面为直角梯形,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.21(12分)如图,在直三棱柱中,分别是中点,且,.求证:平

7、面;求点到平面的距离.22(10分)在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,直线交曲线于两点,为中点.(1)求曲线的直角坐标方程和点的轨迹的极坐标方程;(2)若,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】先求出五个“完全数”随机分为两组,一组2个,另一组3个的基本事件总数为,再求出6和28恰好在同一组包含的基本事件个数,根据即可求出6和28不在同一组的概率.【详解】解:根据题意,将五个“完全数”随机分为两组,一组2个,另一组3个,则

8、基本事件总数为,则6和28恰好在同一组包含的基本事件个数,6和28不在同一组的概率.故选:C.【点睛】本题考查古典概型的概率的求法,涉及实际问题中组合数的应用.2C【解析】利用复数的运算法则、几何意义即可得出【详解】解:复数i(2+i)2i1对应的点的坐标为(1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题3A【解析】对于,根据基尼系数公式,可得基尼系数越小,不平等区域的面积越小,国民分配越公平,所以正确.对于,根据劳伦茨曲线为一条凹向横轴的曲线,由图得,均有,可得,所以错误.对于,因为,所以,所以错误.对于,因为,所以,所以正确.故选A4A【

9、解析】解一元二次不等式化简集合的表示,求解函数的定义域化简集合的表示,根据可以得到集合、之间的关系,结合数轴进行求解即可.【详解】,.因为,所以有,因此有.故选:A【点睛】本题考查了已知集合运算的结果求参数取值范围问题,考查了解一元二次不等式,考查了函数的定义域,考查了数学运算能力.5A【解析】先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假

10、命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.6B【解析】分析:根据三角函数的图象关系进行判断即可详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到 再将得到的图象向左平移个单位长度得到 故选B点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键7D【解析】当时,f(x)不关于直线对称;当时, ,f(x)关于点对称;f(x)得周期,当时, ,f(x)在上是增函数本题选择D选项.8A【解析】根据条件将问题转化为,对于恒成立,然后构造函

11、数,然后求出的范围,进一步得到的最大值.【详解】,对任意的,存在实数满足,使得, 易得,即恒成立,对于恒成立,设,则,令,在恒成立,故存在,使得,即,当时,单调递减;当时,单调递增.,将代入得:,且,故选:A【点睛】本题考查了利用导数研究函数的单调性,零点存在定理和不等式恒成立问题,考查了转化思想,属于难题.9C【解析】设过点作圆 的切线的切点为,根据切线的性质可得,且,再由和双曲线的定义可得,得出为中点,则有,得到,即可求解.【详解】设过点作圆 的切线的切点为,所以是中点,.故选:C.【点睛】本题考查双曲线的性质、双曲线定义、圆的切线性质,意在考查直观想象、逻辑推理和数学计算能力,属于中档题

12、.10A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同时利用向量共线转化为函数求最值。11A【解析】利用双曲线:的焦点到渐近线的距离为,求出,的关系式,然后求解双曲线的渐近线方程【详解】双曲线:的焦点到渐近线的距离为,可得:,可得,则的渐近线方程为故选A【点睛】本题考查双曲线的简单性质的应用,构建出的关系是解题的关键,考查

13、计算能力,属于中档题.12A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先求,再根据的范围求出即可.【详解】由题可知,故.故答案为:.【点睛】本题考查分段函数函数值的求解,涉及对数的运算,属基础题.14【解析】由中位线定理和正方体性质得,从而作出异面

14、直线所成的角,在三角形中计算可得【详解】如图,连接,分别为棱的中点,又正方体中,即是平行四边形,(或其补角)就是直线与直线所成角,是等边三角形,60,其正切值为故答案为:【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角15y=2x【解析】试题分析:当x0时,-x0时,函数y=f(x),则当x0时,求函数的解析式”有如下结论:若函数f(x)为偶函数,则当x0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x)16【解析】依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,所以,

15、因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得: ,又 ,即由得:(2)由余弦定理得:又(当且仅当时取等号) 即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角形面积公式应用、基本不等式求积的最大值、诱导公式的应用等知识,

16、属于常考题型.18(1)点M的极坐标为或(2)【解析】(1)令,由此求得的值,进而求得点的极坐标.(2)设出两点的极坐标,利用勾股定理求得的表达式,利用三角函数最值的求法,求得的最大值.【详解】(1)设点M在极坐标系中的坐标,由,得,或,所以点M的极坐标为或(2)由题意可设,.由,得,.故时,的最大值为.【点睛】本小题主要考查极坐标的求法,考查极坐标下两点间距离的计算以及距离最值的求法,属于中档题.19(1)(2)()见解析()点的坐标为【解析】(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i)设,的中点为,设直线的方程为,代入椭圆方程中,运用根与系数的关系和中点坐标公式,结合

17、三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【详解】解:(1)由题意得, ,所以,所以椭圆方程为(2)设, 的中点为,()证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得 所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐标为【点睛】此题考那可是椭圆方程和性质,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,同时考查弦长公式,属于较难

18、题.20(1)见解析;(2).【解析】(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则,因为底面,则,由知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,所以,设,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,则平面,从而M到平面的距离,所以.【点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.21(1)详见解析;(2).【解析】(1)利用线面垂直的判定定理和性质定理即可证明;(2)取中点为,则,证得平面,利用等体积法求解即可.【详解】(1)因为,是的中点,为直三棱柱,所以平面,因为为中点,所以 平面,又,平面(2),又分别是中点,.由(1)知,,又平面,取中点为,连接如图,则,平面,设点到平面的距离为,由,得,即,解得,点到平面的距离为.【点睛】本题考查线面垂直的判定定理和性质定理、等体积法求点到面的距离;考查逻辑推理能力和运算求解能力;熟练掌握线面垂直的判定定理和性质定理是求解本题的关键;属于中档题.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论