21热点专题训练(教案)_第1页
21热点专题训练(教案)_第2页
21热点专题训练(教案)_第3页
21热点专题训练(教案)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、本章热点专题训练教学目标【知识与技能】进一步加深对一元二次方程及其解的理解,能选择恰当的方法解一元二次方程,掌握用一元二次方程解决实际问题的思路方法,加强对应用问题的分析和解决能力.【过程与方法】经历分析问题和解决问题的过程,拓展对一元二次方程的认识.【情感态度】进一步提高在实际问题中运用方程思想解决问题的能力,增强数学应用的兴趣和意识,感悟解一元二次方程的策略的多样性和合理性,培养开拓创新精神.【教学重点】理解并掌握一元二次方程的解法、根与系数关系和根的判别式,加强构建一元二次方程解决应用问题的能力.【教学难点】综合运用一元二次方程定义、根的判别式及根与系数关系解决具体问题.教学过程一、知识

2、框图,整体把握二、释疑解惑,加深理解1.一元二次方程的一般形式为ax2+bx+c=0(a,b,c为常数,且a0),这里二次项系数a0是必要条件,而这一点往往在解题过程中易忽视,而致结论出错.思考 若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0有一根为0,则常数m的值为.(参考答案:m=2)2.一元二次方程的解法有:开平方法、配方法、公式法和因式分解法.对于具体的方程,一定要认真观察,分析方程特征,选择恰当的方法予以求解.无论选择哪种方法来解方程,降次思想是它的基本思想.3.根的判别式及根与系数的关系:(1)根的判别式=b2-4ac与0的大小关系可直接确定方程的根的情况,当=b2

3、-4ac0时,方程有两个不相等的实数根;当=b2-4ac=0时,方程有两个相等的实数根.当=b2-4ac0时方程没有实数根.(2)根与系数的关系:若方程ax2+bx+c=0(a0)的两个实数根为x1,x2,则x1+x2=-,x1x2=.(3)利用根与系数的关系确定方程的待定字母系数时,千万应注意验证=b2-4ac是否大于等于0,否则所求出的值就不合题意应舍去,这点应引起学生高度重视.4.列一元二次方程解实际应用问题是数学应用的具体体现,如解决传播类问题、增长率类问题、利润问题及几何图形的计算问题等,而解决这些实际问题的关键是弄清题意,找出其中的等量关系,恰当设未知数,建立方程并予以求解.需注意

4、的是,应根据问题的实际意义检验结果是否合理.【教学说明】在对上述知识的回顾过程中,既可师生根据教材的主要知识点进行剖析,也可由教师设置问题,让学生思考后进行总结交流,从而整体上加强对本章知识的理解,同时,对易错点给予强调,引起学生注意.三、典例精析,复习新知例1已知关于x的方程(m+n-1)x(m+n)2+1-(m+n)x+mn=0是一元二次方程,则m+n的值为 .分析:由题意应有(m+n)2+1=2,故(m+n)2=1,m+n=1,又因为一元二次方程的二次项系数m+n-10,m+n1,从而可知m+n=-1.例2已知a是方程x2-2014x+1=0的一个根,求代数式a2-2013a+的值.解:

5、根据方程根的定义有a2-2014a+1=0,从而a2-2013a=a-1.a2+1=2014a,故原式=a-1+= = =2013.在评讲本例时,要防止少数学生利用求根公式求出a的值再代入计算的做法,解释这种解法的弊端,并引导学生学会用整体代入思想解题的方法和技巧.例3已知关于x的方程x2-2(m+1)x+m2=0有两个实数根,试求m的最小整数值.解:由题意有=-2(m+1)2-41m2=8m+40,m-1/2,故m的最小整数值为0.例4已知关于x的方程x2-2x-a=0.(1)若方程有两个不相等的实数根,求a的取值范围;(2)若此方程的两个实数根为x1,x2,则的值能等于吗?如果可以,请求出

6、a的值;如果不能,请说明理由.例5某零售商购进一批单价为16元的玩具,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若按每件20元销售时,每月可销售360件;若按每件25元销售时,每月能卖出210件,假定每月销售件数y(件)是价格x的一次函数.(1)试求y与x之间的关系式;(2)当销售价定为多少时,每月获得1800元利润?(3)每月的利润能达到2000元吗?为什么?解:在(1)中,设y=kx+b,把(20,360),(25,210)代入,可得y=-30 x+960(16x32);在(2)中,设获利为w(元),则w=(x-16)(-30 x+960),当w=1800时,有(

7、x-16)(-30 x+960)=1800,解得x1=22,x2=26,故销售价定为22元或26元时,每月可获得1800元利润;在(3)中,令(x-16)(-30 x+960)=2000,整理,得3x2-144x+1736=0,此时=b2-4ac=(-144)2-431736=-960,原方程无解,即每月利润不可能为2000元.【教学说明】在具体教学时,教师可根据自己的设想设置例题,对所选例题的处理仍应先让学生自主探究,尝试着独立完成,让学生边回顾边思考,加深对本章知识的掌握.四、复习训练,巩固提高1.若方程(m2-2)x2-1=0有一根为1,则m的值是多少?2.若方程3x2-5x-2=0有一

8、根为a,则6a2-10a的值是多少?3.已知关于x的方程(a-2)x2-2(a-1)x+(a+1)=0,a为何非负整数时,(1)方程只有一个实数根?(2)方程有两个相等实数根?(3)方程有两个不等实数根?4.百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商店决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天可多售出2件.要想平均每天销售这种童装盈利1200元,在对顾客利益最大基础上,那么每件童装应降价多少元?【教学说明】这4个小题的设置旨在帮助学生复习知识,其中第1、2题较简单

9、,由学生自主完成,第3、4题可由师生共同完成.【答案】1.m= 2.4 3.(1)a=2;(2)a=3;(3)a=0或a=14.每件降价20元.五、师生互动,课堂小结通过这节课学习,对本章的知识你有哪些新的认识?有何体会?【教学说明】师生共同进行小结反思,让学生进一步加深对本章知识的理解和领悟,积累解题方法和经验,完善知识体系.课后作业1.布置作业:从教材“复习题21”中选取.2.完成本课的热点专题训练.教学反思1.本节课为复习课,所以首先要让学生了解本章的知识体系,该掌握哪些知识点,所以教学的展开都以问题的解决为中心,使教学过程成为在老师指导下学生的一种自主探索的学习活动过程,在探索中体现数学思想方法的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论