故障电动刀架(共9页)_第1页
故障电动刀架(共9页)_第2页
故障电动刀架(共9页)_第3页
故障电动刀架(共9页)_第4页
故障电动刀架(共9页)_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、故障(gzhng)电动刀架(2008-01-12 00:29:25) HYPERLINK javascript:; 转载(zhunzi)标签: HYPERLINK /c.php?t=blog&k=%D4%D3%CC%B8&ts=bpost&stype=tag t _blank 杂谈 故障现象一:电动刀架锁不紧故障原因 处理方法发信盘位置没对正 :拆开刀架的顶盖,旋动并调整发信盘位置,使刀架的霍尔元件对准磁钢,使刀位停在准确位置。系统反锁时间不够:调整系统反锁时间数即可(新刀架反锁时间.2即可)。锁紧机构故障 :拆开刀架,调整机械,并检查定位销是否折断(sh dun).故障现象二:电动刀架某一位

2、刀号转不停,其余刀位可以转动故障原因 处理方法此位刀的霍尔元件损坏:确认是哪个刀位使刀架转不停,在系统上输入转动该刀位,用万用表量该刀位触点对+24V触点是否有变化,若无变化,可判定为该位刀霍尔元件损坏,更换发信盘或霍尔元件此刀位信号线断路,造成系统无法检测到位信号:检查该刀位信号与系统的连线是否存在断路,正确连接即可系统的刀位信号接收电路有问题:当确定该刀位霍尔元件没问题,以及该刀位信号与系统的连线也没问题的情况下更换主板经济型数控车床一般都配有四工位自动回转刀架,它是根据微机数控系统改造传统机床设备的需要,同时兼顾刀架在机床上能够独立控制的需要而设计的。现有自动回转刀架,其结构主要有插销式

3、和端齿盘式。由于刀架生产厂家无统一标准,因此,其结构、尺寸各异。而无论是哪一类刀架,要使其正常工作,均涉及到机械、电气、控制系统等多方面的稳定、可靠工作。一旦出现某种故障现象,则可能是机械原因,也可能是电气、控制系统方面的原因。因此,应根据不同故障类型,找准原因,准确迅速确定故障点,方能及时排除故障。现以目前使用较多的端齿盘式四工位自动刀架可能出现的各种故障现象加以分析,确定其排除方法。其它类型的刀架,虽其结构、尺寸、元器件类型号各有差异,但故障原因大多雷同,也可参照此法加以排除。1 刀架不能启动机械方面(fngmin)的原因a. 刀架预紧力过大。当用六角扳手插入蜗杆端部旋转时不易转动(zhu

4、n dng),而用力时,可以转动,但下次夹紧后刀架仍不能启动。此种现象出现,可确定刀架不能启动的原因是预紧力过大,可通过调小刀架电机夹紧电流排除之。b. 刀架内部机械卡死。当从蜗杆端部转动蜗杆时,顺时针方向转不动,其原因是机械卡死。首先,检查夹紧装置反靠定位销是否在反靠棘轮槽内,若在,则需将反靠棘轮与螺杆连接销孔回转一个角度重新打孔连接;其次,检查主轴螺母是否锁死,如螺母锁死,应重新调整;再次,由于润滑不良造成旋转(xunzhun)件研死,此时,应拆开,观察实际情况,加以润滑处理。2. 电器方面的原因a. 电源不通、电机不转。检查溶芯是否完好、电源开关是否良好接通、开关位置是否正确。当用万用表

5、测量电容时,电压值是否在规定范围内,可通过更换保险、调整开关位置、使接通部位接触良好等相应措施来排除。除此以外,电源不通的原因还可考虑刀架至控制器断线、刀架内部断线、电刷式霍尔元件位置变化导致不能正常通断等情况。b. 电源通,电机反转,可确定为电机相序接反。通过检查线路,变换相序排除之。c. 手动换刀正常、机控不换刀,应重点检查微机与刀架控制器引线、微机I/O接口及刀架到位回答信号。2 刀架连续运转、到位不停由于刀架能够连续运转,所以,机械方面出现故障的可能性较小,主要从电气方面检查:检查刀架到位信号是否发出,若没有到位信号,则是发讯盘故障。可检查:发讯盘弹性触头是否磨坏、发讯盘地线是否断路或

6、接触不良或漏接。此时需要更换弹性片触头或重修,针对其线路中的继电器接触情况、到位开关接触情况、线路连接情况相应地进行线路故障排除。当仅出现某号刀不能定位时,则是由于该号刀位线断路所至。3 刀架越位过冲或转不到位刀架越位过冲故障的机械原因可能性较大。主要(zhyo)是后靠装置不起征作用。首先检查后靠定位销是否灵活,弹簧是否疲劳。此时应修复定位销使其灵活或更换弹簧。其次,检查后靠棘轮与蜗杆连接是否断开,若断开,需更换连接销。若仍出现过冲现象,则可能是由于刀具太长过重,应更换弹性模量稍大的定位销弹簧。出现刀架运转不到位(有时中途(zhngt)位置突然停留),主要是由于发讯盘触点与弹性片触点错位,即刀

7、位信号胶木盘位置固定偏移所至。此时,应重新调整发讯盘与弹性片触头位置并固定牢靠。若仍不能排除故障,则可能是发讯盘夹紧螺母松动,造成位置移动。4 刀架不能正常(zhngchng)夹紧出现该故障时,首先检查夹紧开关位置是否固定不当,并调整至正常位置;其次,用万用表检查其相应线路继电器是否能正常工作,触点接触是否可靠。若仍不能排除,则应考虑刀架内部机械配合是否松动。有时会出现由于内齿盘上有碎屑造成夹紧不牢而使定位不准,此时,应调整其机械装配并清洁内齿盘。5 其它故障现象除以上故障外,有时还出现:无法机控选刀、夹紧后无回答信号、启动或松开手控按纽刀架返原来位置等故障现象。出现这些故障的主要原因是电路中

8、继电器接触不良、胶木盘位置不正、电源相序不对所致,可分别读其加以调整、修复,使故障排除。熟悉以上分析、检查方法及解决措施,对于及时、有效地找到病源,对症下药,迅速排除孤障至关重要。当然,除此之外,还可以能出现其它意外孤障,但在掌握上述方法的基础上,便能够就果循因,加以排除。数控机床参考点故障摘要: 这里详细地介绍了发那克,三菱,西门子几种常用数控系统参考点的工作原理、调整和设定方法,并举例说明参考点的故障现象,解决方法。关键词:参考点 相对位置检测系统 绝对位置检测系统前言: 当数控机床更换、拆卸电机或编码器后,机床会有报警信息:编码器内的机械绝对位置数据丢失了,或者机床回参考点后发现参考点和

9、更换前发生了偏移,这就要求我们重新设定参考点,所以我们对了解参考点的工作原理十分必要。 参考点是指当执行手动参考点回归或加工程序的G28指令时机械所定位的那一点,又名原点或零点。每台机床有一个参考点,根据需要也可以设置多个参考点,用于自动刀具交换(ATC)、自动拖盘交换(APC)等。通过G28指令执行快速复归的点称为第一参考点(原点),通过G30指令复归的点称为第二、第三或第四参考点,也称为返回浮动参考点。由编码器发出的栅点信号或零标志信号所确定的点称为电气原点。机械原点是基本机械坐标系的基准点,机械零件一旦装配好,机械参考点也就建立了。为了使电气原点和机械原点重合,将使用一个参数进行设置,这

10、个重合的点就是机床原点。 机床配备的位置检测系统一般有相对位置检测系统和绝对位置检测系统。相对位置检测系统由于在关机后位置数据丢失,所以在机床每次开机后都要求先回零点才可投入加工运行,一般使用挡块式零点回归。绝对位置检测系统即使在电源切断时也能检测机械的移动量,所以机床每次开机后不需要进行原点回归。由于在关机后位置数据不会丢失,并且绝对位置检测功能执行各种数据的核对,如检测器的回馈量相互核对、机械固有点上的绝对位置核对,因此具有很高的可信性。当更换绝对位置检测器或绝对位置丢失时,应设定参考点,绝对位置检测系统一般使用无挡块式零点回归。一: 使用相对位置检测系统的参考点回归方式:1、发那克系统:

11、1)、工作原理:当手动或自动回机床参考点时,首先,回归轴以正方向快速移动,当挡块碰上参考点接近开关时,开始减速运行。当挡块离开参考点接近开关时,继续以FL速度移动。当走到相对编码器的零位时,回归电机停止,并将此零点作为机床的参考点。2)、相关参数:参数内容 系统0i/16i/18i/21i0所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391各轴的参考计数器容量182105700575 7570 7571每轴的栅格偏移量185005080511 0640 0642 7508 7509是否使用绝对脉冲编码器

12、作为位置检测器: 0. 不是 、1. 是 1815.50021 7021绝对脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037快速进给加减速时间常数16200522快速进给速度142005180521FL速度14250534手动快速进给速度142405590562伺服回路增益182505173)、设定方法:a、 设定参数:所有轴返回参考点的方式0;各轴返回参考点的方式0;各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定;是否使用绝对脉冲编码器作为

13、位置检测器0 ;绝对脉冲编码器原点位置的设定0;位置检测使用类型0;快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定。b、 机床重启,回参考点。c、 由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。4)、故障举例:一台0i-B机床X轴手动回参考点时出现90号报警(返回参考点位置异常)。a、机床再回一次参考点,观察X轴移动情况,发现刚开始时X轴不是快速移动,速度很慢;b、检测诊断号#300,128;d、 检查手动快速进给参数1424,设定正确;e、 检查倍率开关ROV1、ROV2信号,发现倍率开关坏,更换后机床正常。2、三菱系统:1)工作原理

14、:机床电源接通后第一次回归参考点,机械快速移动,当参考点检测开关接近参考点挡块时,机械减速并停止。然后,机械通过参考点挡块后,缓慢移动到第一个栅格点的位置,这个点就是参考点。在回参考点前,如果设定了参考点偏移参数,机械到达第一个栅格点后继续向前移动,移动到偏移量的点,并把这个点作为参考点。2)、相关参数:参数内容 系统M60 M64快速进给速度2025慢行速度2026参考点偏移量2027栅罩量2028栅间隔2029参考点回归方向20303)、设定方法:a、设定参数:参考点偏移量0栅罩量0栅间隔滚珠导螺快速进给速度、慢行速度、参考点回归方向依实际情况进行设定。b、重启电源,回参考点。C、在|报警

15、/诊断|伺服|伺服监视(2)|,计下栅间隔和栅格量的值。d、计算栅罩量: 当栅间隔/2栅格量时,栅罩量栅格量栅间隔/2e、把计算值设定到栅罩量参数中。f、重启电源,再次回参考点。g、重复c、d过程,检查栅罩量设定值是否正确,否则重新设定。h、根据需要,设定参考点偏移量。 4)、故障举例:一台三菱M64系统钻削中心,Z轴回参考点时发生过行程报警。a、 检查参考点检测开关信号,当移动到参考点挡块位置时,能够从“0”变为“1”;b、 检查栅罩量参数(2028),正常;检查参考点偏移量参数(2027),正常;检查参考点回归方向参数(2030),和其它同型号机床核对,发现由反方向“1”变成了同方向“0”

16、,改正后,重启回参考点,正常。3、西门子系统:1)、工作原理:机床回参考点时,回归轴以Vc速度快速向参考点文件块位置移动,当参考点开关碰上挡块后,开始减速并停止,然后反方向移动,退出参考点挡块位置,并以Vm速度移动,寻找到第一个零脉冲时,再以Vp速度移动Rv参考点偏移距离后停止,就把这个点作为2)、相关参数:参数内容 系统802D/810D/840D返回参考点方向MD34010寻找参考点开关速度(Vc)MD34020寻找零脉冲速度(Vm)MD34040寻找零脉冲方向MD34050定位速度(Vp)MD34070参考点偏移(Rv)MD34080参考点设定位置(Rk)MD341003、设定方法: a

17、、设定参数:返回参考点方向参数、寻找零脉冲方向参数根据挡块安装方向等进行设定;寻找参考点开关速度(Vc)参数设定时,要求在该速度下碰到挡块后减速到“0”时,坐标轴能停止在挡块上,不要冲过挡块;参考点偏移(Rv)参数0b、机床重启,回参考点。C、由于机床参考点与设定前不同,重新调整参考点偏移(Rv)参数。4、故障举例:一台西门子810D系统,机床每次参考点返回位置都不一致,从以下几项逐步进行排查:a、 伺服模块控制信号接触不良;b、电机与机械联轴节松动;C、参数点开关或挡块松动;d、参数设置不正确;、位置编码器供电电压不低于4.8V;f、位置编码器有故障;g、位置编码器回馈线有干扰;最后查到参考

18、点挡块松动,拧紧螺丝后,重新试机,故障排除。二: 绝对位置检测系统:1. 发那克系统:1)、工作原理:绝对位置检测系统参考点回归比较简单,只要在参考点方式下,按任意方向键,控制轴以参考点间隙初始设置方向运行,寻找到第一个栅格点后,就把这个点设置为参考点。2)、相关参数:参数内容 系统0i/16i/18i/21i0所有轴返回参考点的方式: 0. 挡块、 1. 无挡块1002.10076各轴返回参考点的方式: 0. 挡块、 1. 无挡块1005.10391各轴的参考计数器容量182105700575 7570 7571每轴的栅格偏移量185005080511 0640 0642 7508 7509

19、是否使用绝对脉冲编码器作为位置检测器: 0. 不是 、1. 是 1815.50021 7021绝对脉冲编码器原点位置的设定:0. 没有建立、 1. 建立1815.40022 7022位置检测使用类型:0.内装式脉冲编码器、1. 分离式编码器、直线尺1815.10037 7037快速进给加减速时间常数16200522快速进给速度142005180521FL速度14250534手动快速进给速度142405590562伺服回路增益18250517返回参考点间隙初始方向 0. 正 1. 负10060003 7003 00663)、设置方法:a、设定参数:所有轴返回参考点的方式0;各轴返回参考点的方式0

20、;各轴的参考计数器容量,根据电机每转的回馈脉冲数作为参考计数器容量设定;是否使用绝对脉冲编码器作为位置检测器0 ;绝对脉冲编码器原点位置的设定0;位置检测使用类型0;快速进给加减速时间常数、快速进给速度、FL速度、手动快速进给速度、伺服回路增益依实际情况进行设定;b、机床重启,手动回到参考点附近;c、是否使用绝对脉冲编码器作为位置检测器1 ;绝对脉冲编码器原点位置的设定1;e、机床重启;f、 由于机床参考点与设定前不同,重新调整每轴的栅格偏移量。2、三菱系统(M60、M64为例):1)、无挡块机械碰压方式:a、设定参数: #2049. 1 无檔块机械碰压方式; #2054 电流极限;b、选择“

21、绝对位置设定”画面,选择手轮或寸动模式,(也可选择自动初期化模式);C、在“绝对位置设定”画面,选择“可碰压”;d、#0绝对位置设定1 , #2原点设定:以基本机械坐标为准,设定参考点的坐标值;e、移动控制轴,当控制轴碰压上机械挡块,在给定时间内达到极限电流时,控制轴停止并反方向移动。如果b步选择手轮或寸动模式,则控制轴反方向移动移动到第一栅格点,这个点就是电气参考点;如果b步选择“自动初期化”模式,则在第a步还要设置 #2005碰压速度参数和 #2056接近点值,此时控制轴反方向以 #2005(碰压速度)移动到 #2056(接近点)值停止,再以 #2055(碰压速度)向挡块移动,在给定时间内达到极限电流时,控制轴栅格点,这个点就是电气参考点;g、重启电源。2)、无挡块参考点方式调整:a、设定参数: #2049 2 无挡块参考点调整方式; #2050 0 正方向、 1 负方向;b、选择“绝对位置设定”画面,选择手轮或寸动模式;c、在“绝对位置设定”画面,选择“无碰压”方式;d、#0绝对位置设定1 , #2原点设定:以基

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论