平面向量与解三角形-1981-2019年历年数学联赛50套真题答案_第1页
平面向量与解三角形-1981-2019年历年数学联赛50套真题答案_第2页
平面向量与解三角形-1981-2019年历年数学联赛50套真题答案_第3页
平面向量与解三角形-1981-2019年历年数学联赛50套真题答案_第4页
平面向量与解三角形-1981-2019年历年数学联赛50套真题答案_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1981年2019 年全国高中数学联赛试题分类汇编平面向量与解三角形部分 第 PAGE 11 页 共 NUMPAGES 11 页1981年2019年全国高中数学联赛试题分类汇编平面向量与解三角形部分2019A 3、平面直角坐标系中,是单位向量,向量满足,且对任意实数恒成立,则的取值范围为 。答案: 解析:不妨设,由得,等价于,即,解得,所以。2019A 9、在中,若是与的等比中项,且是与的等差中项,求的值解析:因为是与的等比中项,故存在,使得由是与的等差中项,得,结合正余弦定理得,即,将代入得,解得,所以。2019B 2. 若平面向量与垂直,其中为实数,则的模为 答案: 解析:由条件得,解得,

2、所以。2019B 3. 设,是方程的两根,则的值为 答案: 解析:由已知得,从而2018A 7、设为的外心,若,则的值为 答案:解析:取的中点,则。由得,知,且在直线同侧。不妨设圆的半径为,则,,在中,有余弦定理得,在中,由正弦定理得。2017A 7、在中,为边的中点,是线段的中点,若,的面积为,则的最小值为 答案: 解析:由条件知,则,由得所以,所以,当且仅当时取等。则。2017B 4、在中,若,且三条边成等比数列,则的值为 答案:解析:由正弦定理知,又,于是,从而由余弦定理得:.2016A 9、(本题满分16分)在中,已知,求的最大值。解析:由数量积的定义及余弦定理知,同理得,故已知条件化

3、为即8分由余弦定理及基本不等式,得所以12分等号成立当且仅当因此的最大值是16分2016B 10、(本题满分20分)在中,已知(1)将的长分别记为,证明:;(2)求的最小值解析:(1)由数量积的定义及余弦定理知,同理得,故已知条件化为即(2)由余弦定理及基本不等式,得等号成立当且仅当因此的最小值为2015A 4、在矩形中,,边上(包含,)的动点与线段延长线上(包含)的动点满足,则向量与向量的数量积的最小值为 答案:解析:不妨设 A ( 0 , 0 ) , B ( 2 , 0 ) , D ( 0 , l ) 设 P 的坐标为(, l) (其中),则由得Q的坐标为(2,-),故,因此,当时,200

4、5*2、空间四点满足,则的取值 A. 只有一个 B. 有二个 C. 有四个 D. 有无穷多个答案:A解析:注意到由于则=即只有一个值为0,故选A。2014A 7、设等边三角形的内切圆半径为,圆心为。若点满足,则与的面积之比最大值为 答案: 解析:由PI=1知点P在以I为圆心的单位圆K上。设,在圆上取一点,使得取到最大值,此时应落在内,且是与圆的切点。由于,故 其中,由知,于是,所以根据、可知,当时,的最大值为2014B 4、若果三角形的三个内角的余切值依次成等差数列,则角的最大值是 答案: 解析:记,它们成等差数列,即,由于三个内角和为,所以中至多有一个小于等于,这说明.另一方面,即,即,联立

5、消去得,有,得,即,解得,当且仅当时,角取得最大值。2013A 3、在中,已知,则的值为 答案:解析:由于,即2013B1、已知锐角三角形的三条边长都是整数,其中两条边长分别为3和4,则第三条边的边长为 答案:或解析:设第三条边长为。因为是锐角三角形,所以,且,即,因为是整数,得或2012A 2、设的内角的对边分别为,且满足,则的取值为 答案:解析:由题设及余弦定理得,即,故2012B 5、在中,若,则面积的最大值为 答案:解析:记的中点为,则,因为,所以,从而所以(当且仅当,即时,取等号)故所求面积最大值为。另法:由得,由,平方可得,所以(当且仅当时,等号成立),所以所求面积最大值为。200

6、8AB 6、设D的内角所对的边成等比数列,则的取值范围为( )A. B. C. D. 答案:C解析:设的公比为,则,而 因此,只需求的取值范围因为成等比数列,最大边只能是或,因此要构成三角形的三边,必须且只需且即有不等式组即得从而,因此所求的取值范围是 2007*8、在和中,是的中点,若,则与的夹角的余弦值为 答案:解析:因为,所以,即。因为,所以,即。设与的夹角为,则有,即,所以。2006*1、已知,若对任意,,则一定为 A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D.答案不确定答案:C解析:令,过A作于D。由,推出,令,代入上式,得,即 , 也即 。从而有。由此可得 。 2005

7、*3、内接于单位圆,三个内角的平分线延长后分别交此圆于.则的值为 A. B. C. D. 答案:A解析:如图,连,则所以,,。所以,即可求得。2004*4、设点在的内部,且有,则与的面积的比为 A. B. C. D. 答案:C解析:如图,设面积,则,进而得。2001*4、如果满足,的恰有一个,那么的取值范围是 A. B. C. D. 或答案:D解析:根据正弦定理得,得,显然,要使得恰有一个,则或,得或1999*9、在中,记,则_答案:解析:1993*5、在中,角的对边长分别为,若等于边上的高,则的值是( )A. B. C. D.答案:A解析:由题设得,即,即整理得,又,故选A1992*4、在中

8、,角的对边分别记为(),且都是方程的根,则( )A.是等腰三角形,但不是直角三角形 B.是直角三角形,但不是等腰三角形C.是等腰直角三角形 D.不是等腰三角形,也不是直角三角形答案:B解析:由题意得根为,所以,即得选B 1991*8在中,已知三个角成等差数列,假设它们所对的边分别为,并且等于边上的高,则 答案:解析:易知,由已知,即,即 (舍去),1988*8在中,已知,、分别是、上的高,则 答案:解析:注意到,1986*6、边长为的三角形,其面积等于,而外接圆半径为,若,则与的大小关系是( )A. B. C. D.不确定答案:C解析:,由,知且三角形不是等边三角形(且等号不成立)选C1985

9、*7、在中,角的对边分别为,若角的大小成等比数列,且,则角的弧度为等于 答案:解析:由余弦定理,故即所以 由,得,即,或 (不可能) 1985*一、在直角坐标系中,点和点的坐标均为一位的正整数与x轴正方向的夹角大于,与轴正方向的夹角小于,在轴上的射影为, 在轴上的射影为,的面积比的面积大,由组成的四位数试求出所有这样的四位数,并写出求解过程解析:由题意得,且都是不超过10的正整数 ,则或但,故舍去即, ,1984*9、如图,是单位圆的直径,在上任取一点,作,交圆周于,若点的坐标为,则当 时,线段、可以构成锐角三角形答案:解析:由对称性,先考虑的情况,设,则,且必有,于是只要考虑,即,解得1983*3、已知等腰三角形的底边及高的长都是整数,那么,和中( )A.一个是有理数,另一个是无理数; B.两个都是有理数; C.两个都是无理数; D.是有理数还是无理数要根据和的数值来确定。答案:B解析:为有理数,得和都是有理数选B1983*8、任意,设它的周长、外接圆半径长与内切圆半径长分别为、与,那么( )A B C D三种关系都不对答案:C解析:,当时,最大,而可大于任意指定的正数从而可有,否

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论