版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
2、A20B30C40D502如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )ABCD3如图,ABCD,那么()ABAD与B互补B1=2CBAD与D互补DBCD与D互补4九章算术是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )ABCD5函数与在同一坐标系中的大致图象是( )A、 B、 C、 D、6我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A6
3、.75103吨B67.5103吨C6.75104吨D6.75105吨7如图,在平面直角坐标系中,A(1,2),B(1,-1),C(2,2),抛物线y=ax2(a0)经过ABC区域(包括边界),则a的取值范围是()A或B或C或D8二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( )ABCD9如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,那么下列式子中正确的是( )ABCD10用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.AB与CBC与DCE与FDA与B二、填空题(本大题共6个小题,每小题3分,共18分)11在一个不透明的袋
4、子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_12关于x的不等式组的整数解有4个,那么a的取值范围( )A4a6B4a6C4a6D2a413分解因式:a3a= 14如图,在RtABC中,ACB90,ABC30,将ABC绕点C顺时针旋转至ABC,使得点A恰好落在AB上,则旋转角度为_1521世纪纳米技术将被广泛应用纳米是长度的度量单位,1纳米=0.000000001米,则12纳米用科学记数法表示为_米16把16a3ab2因式分解_三、解答题(共8题,共72分)17(8分)在ABC中,已知AB=AC,BAC=90,E为边AC上一点,连接BE(1)如图1,若
5、ABE=15,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG18(8分)如图所示,点P位于等边ABC的内部,且ACP=CBP(1)BPC的度数为_;(2)延长BP至点D,使得PD=PC,连接AD,CD依题意,补全图形;证明:AD+CD=BD;(3)在(2)的条件下,若BD的长为2,求四边形ABCD的面积19(8分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校
6、某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有_人,在扇形统计图中,“乒乓球”的百分比为_%,如果学校有800名学生,估计全校学生中有_人喜欢篮球项目(2)请将条形统计图补充完整(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率20(8分)定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆如图所示,已知:I是ABC的BC边上的旁切圆,E、F分别是切点,ADIC于点D(1)试探究:D、E、F三点是否
7、同在一条直线上?证明你的结论(2)设AB=AC=5,BC=6,如果DIE和AEF的面积之比等于m,试作出分别以 , 为两根且二次项系数为6的一个一元二次方程21(8分)(1)计算:22+(1)0+2sin60(2)先化简,再求值:(),其中x=122(10分)为了弘扬我国古代数学发展的伟大成就,某校九年级进行了一次数学知识竞赛,并设立了以我国古代数学家名字命名的四个奖项:“祖冲之奖”、“刘徽奖”、“赵爽奖”和“杨辉奖”,根据获奖情况绘制成如图1和图2所示的条形统计图和扇形统计图,并得到了获“祖冲之奖”的学生成绩统计表:“祖冲之奖”的学生成绩统计表:分数/分80859095人数/人42104根据
8、图表中的信息,解答下列问题:(1)这次获得“刘徽奖”的人数是_,并将条形统计图补充完整;(2)获得“祖冲之奖”的学生成绩的中位数是_分,众数是_分;(3)在这次数学知识竟赛中有这样一道题:一个不透明的盒子里有完全相同的三个小球,球上分别标有数字“2”,“1”和“2”,随机摸出一个小球,把小球上的数字记为x放回后再随机摸出一个小球,把小球上的数字记为y,把x作为横坐标,把y作为纵坐标,记作点(x,y)用列表法或树状图法求这个点在第二象限的概率23(12分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1
9、)若m=2,求点A和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由24如图,一次函数ykx+b与反比例函数y(x0)的图象交于A(m,6),B(3,n)两点求一次函数关系式;根据图象直接写出kx+b0的x的取值范围;求AOB的面积参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】分析:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.详解:根据题意得: ,计算得出:n=20,故选A.点
10、睛:根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.2、A【解析】根据左视图的概念得出各选项几何体的左视图即可判断【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念3、C【解析】分清截线和被截线,根据平行线的性质进行解答即可【详解】解:ABCD,BAD与D互补,即C选项符合题意;当ADBC时,BAD与B互补,1=2,BCD与D互补,故选项A、B、D都不合题意,故选:C【点睛】本题考查了平行线的性质,熟记性质并准确识图是解
11、题的关键4、C【解析】根据题意相等关系:8人数-3=物品价值,7人数+4=物品价值,可列方程组:,故选C.点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.5、D【解析】试题分析:根据一次函数和反比例函数的性质,分k0和k0两种情况讨论:当k0时,一次函数图象过二、四、三象限,反比例函数中,k0,图象分布在一、三象限;当k0时,一次函数过一、三、四象限,反比例函数中,k0,图象分布在二、四象限故选D考点:一次函数和反比例函数的图象6、C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a10n,其中1|a|10,n为整数,表示时关键要正
12、确确定a的值以及n的值在确定n的值时,看该数是大于或等于1还是小于1当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,n为它第一个有效数字前0的个数(含小数点前的1个0)67500一共5位,从而67 500=6.752故选C7、B【解析】试题解析:如图所示:分两种情况进行讨论:当时,抛物线经过点时,抛物线的开口最小,取得最大值抛物线经过ABC区域(包括边界),的取值范围是: 当时,抛物线经过点时,抛物线的开口最小,取得最小值抛物线经过ABC区域(包括边界),的取值范围是: 故选B.点睛:二次函数 二次项系数决定了抛物线开口的方向和开口的大小,开口向上,开口向下.的绝对值越大,开口越小
13、.8、D【解析】根据抛物线和直线的关系分析.【详解】由抛物线图像可知,所以反比例函数应在二、四象限,一次函数过原点,应在二、四象限.故选D【点睛】考核知识点:反比例函数图象.9、A【解析】分析:根据三角形的外角得:BDA=A+AFD,AFD=A+CEA,代入已知可得结论.详解:由折叠得:A=A,BDA=A+AFD,AFD=A+CEA,A=,CEA=,BDA=,BDA=+=2+,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.10、A【解析】试题分析:在计算器上依次按键转化为算式为=-1.414;计算可得结果介于2与1之间故选A考点:1、计算器数
14、的开方;2、实数与数轴二、填空题(本大题共6个小题,每小题3分,共18分)11、 【解析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是故答案为:【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=12、C【解析】分析:先根据一元一次不等式组解出x的取值,再根据不等式组的整数解有4个,求出实数a的取值范围详解: 解不等式,得 解不等
15、式,得 原不等式组的解集为 只有4个整数解,整数解为: 故选C.点睛:考查解一元一次不等式组的整数解,分别解不等式,写出不等式的解题,根据不等式整数解的个数,确定a的取值范围.13、【解析】a3a=a(a2-1)=14、60【解析】试题解析:ACB=90,ABC=30,A=90-30=60,ABC绕点C顺时针旋转至ABC时点A恰好落在AB上,AC=AC,AAC是等边三角形,ACA=60,旋转角为60故答案为60.15、1.2101【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的
16、个数所决定【详解】解:12纳米120.000000001米1.2101米故答案为1.2101【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定16、a(4a+b)(4ab)【解析】首先提取公因式a,再利用平方差公式分解因式得出答案【详解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b)故答案为:a(4a+b)(4a-b)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键三、解答题(共8题,共72分)17、(1)3+1 (2)证明见解析【解析】(1)如图1中,在AB
17、上取一点M,使得BM=ME,连接ME,设AE=x,则ME=BM=2x,AM=3x,根据AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解决问题(2)如图2中,作CQAC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题【详解】解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME在 RtABE 中,OB=OE,BE=2OA=2,MB=ME,MBE=MEB=15,AME=MBE+MEB=30,设 AE=x,则 ME=BM=2x,AM=3x,AB2+AE2=BE2,2x+3x2+x2=22,x=6-22 (负根已经舍弃),AB=AC=(2
18、+ 3)6-22 ,BC= 2 AB= 3+1作 CQAC,交 AF 的延长线于 Q, AD=AE ,AB=AC ,BAE=CAD,ABEACD(SAS),ABE=ACD,BAC=90,FGCD,AEB=CMF,GEM=GME,EG=MG,ABE=CAQ,AB=AC,BAE=ACQ=90,ABECAQ(ASA),BE=AQ,AEB=Q,CMF=Q,MCF=QCF=45,CF=CF,CMFCQF(AAS),FM=FQ,BE=AQ=AF+FQ=AF=FM,EG=MG,BG=BE+EG=AF+FM+MG=AF+FG【点睛】本题考查全等三角形的判定和性质、直角三角形斜边中线定理,等腰直角三角形的性质等
19、知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题18、(1)120;(2)作图见解析;证明见解析;(3)3 .【解析】【分析】(1)根据等边三角形的性质,可知ACB=60,在BCP中,利用三角形内角和定理即可得;(2)根据题意补全图形即可;证明ACDBCP,根据全等三角形的对应边相等可得AD=BP,从而可得AD+CD=BP+PD=BD;(3)如图2,作BMAD于点M,BNDC延长线于点N,根据已知可推导得出BM=BN=32BD=3,由(2)得,AD+CD=BD=2,根据S四边形ABCD=SABD+SBCD 即可求得.【详解】(1)三角形ABC是等边三角形,ACB=60,即ACP+B
20、CP=60,BCP+CBP+BPC=180,ACP=CBP,BPC=120,故答案为120;(2)如图1所示.在等边ABC中,ACB=60,ACP+BCP=60,ACP=CBP,CBP+BCP=60,BPC=180-CBP+BCP=120,CPD=180-BPC=60,PD=PC,CDP为等边三角形,ACD+ACP=ACP+BCP=60,ACD=BCP,在ACD和BCP中,AC=BCACD=BCPCD=CP,ACDBCPSAS ,AD=BP,AD+CD=BP+PD=BD;(3)如图2,作BMAD于点M,BNDC延长线于点N,ADB=ADC-PDC=60,ADB=CDB=60,ADB=CDB=6
21、0,BM=BN=32BD=3,又由(2)得,AD+CD=BD=2,S四边形ABCD=SABD+SBCD =12ADBM+12CDBN =32AD+CD=322 =3.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.19、(1)5,20,80;(2)图见解析;(3).【解析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得;(3)用800乘以喜欢篮球人数所占的比例即可得;(4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状
22、图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【详解】(1)调查的总人数为2040%=50(人),喜欢篮球项目的同学的人数=50201015=5(人);(2)“乒乓球”的百分比=20%;(3)800=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=20、 (1) D、E、F三点是同在一条直线上(2) 6x213x+6=1【解析】(1)利用切线长定理及梅氏定理即
23、可求证;(2)利用相似和韦达定理即可求解.解:(1)结论:D、E、F三点是同在一条直线上 证明:分别延长AD、BC交于点K,由旁切圆的定义及题中已知条件得:AD=DK,AC=CK,再由切线长定理得:AC+CE=AF,BE=BF, KE=AF,由梅涅劳斯定理的逆定理可证,D、E、F三点共线,即D、E、F三点共线 (2)AB=AC=5,BC=6,A、E、I三点共线,CE=BE=3,AE=4,连接IF,则ABEAIF,ADICEI,A、F、I、D四点共圆 设I的半径为r,则:,即,由AEFDEI得:,因此,由韦达定理可知:分别以、为两根且二次项系数为6的一个一元二次方程是6x213x+6=1 点睛:
24、本是一道关于圆的综合题.正确分析图形并应用图形的性质是解题的关键.21、(1) (2) 【解析】(1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题【详解】解:(1)原式=+1+2=+1+=;(2)原式=,当x=1时,原式=【点睛】本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法22、(1)刘徽奖的人数为人,补全统计图见解析;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分;(3)(点在第二象限)【解析】
25、(1)先根据祖冲之奖的人数及其百分比求得总人数,再根据扇形图求出赵爽奖、杨辉奖的人数,继而根据各奖项的人数之和等于总人数求得刘徽奖的人数,据此可得;(2)根据中位数和众数的定义求解可得;(3)列表得出所有等可能结果,再找到这个点在第二象限的结果,根据概率公式求解可得【详解】(1)获奖的学生人数为2010%=200人,赵爽奖的人数为20024%=48人,杨辉奖的人数为20046%=92人,则刘徽奖的人数为200(20+48+92)=40,补全统计图如下:故答案为40;(2)获得“祖冲之奖”的学生成绩的中位数是90分,众数是90分故答案为90、90;(3)列表法:第二象限的点有(2,2)和(1,2
26、),P(点在第二象限)【点睛】本题考查了用列表法或画树状图法求概率、频数分布直方图以及利用统计图获取信息的能力利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率23、(1)A(4,0),C(3,3);(2) m=;(3) E点的坐标为(2,0)或(,0)或(0,4);【解析】方法一:(1)m=2时,函数解析式为y=,分别令y=0,x=1,即可求得点A和点B的坐标, 进而可得到点C的坐标;(2) 先用m表示出P, A C三点的坐标,分别讨论APC=,ACP=,PAC=三种情况, 利用勾股定理即可求得m的值;(3) 设点F(x,y)是
27、直线PE上任意一点,过点F作FNPM于N,可得RtFNPRtPBC,NP:NF=BC:BP求得直线PE的解析式,后利用PEC是以P为直角顶点的等腰直角三角形求得E点坐标.方法二:(1)同方法一.(2) 由ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标【详解】方法一:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m
28、1),A(2m,0)对称轴x=m,P(1,m)把x=1代入抛物线y=x22mx,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5,AC2=1+(12m)2=24m+4m2,ACP为直角三角形,当ACP=90时,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:4m210m+6=0,解得:m=,m=1(舍去),当APC=90时,PA2+PC2=AC2,即5m24m+1+5m210m+5=24m+4m2,整理得:6m210m+4=0,解得:m=,m=1,和1都不
29、符合m1,故m=(3)设点F(x,y)是直线PE上任意一点,过点F作FNPM于N,FPN=PCB,PNF=CBP=90,RtFNPRtPBC,NP:NF=BC:BP,即=,y=2x2m,直线PE的解析式为y=2x2m令y=0,则x=1+,E(1+m,0),PE2=(m)2+(m)2=,=5m210m+5,解得:m=2,m=,E(2,0)或E(,0),在x轴上存在E点,使得PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=2m,E(0,2m)PE2=(2)2+12=55m210m+5=5,解得m=2,m=0(舍去),E(0,4)y轴上存在点E,使得PEC是以P为直角顶点的等腰直角三角形,此时E(0,4),在坐标轴上是存在点E,使得PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年山东海事职业学院单招综合素质考试题库及答案详解一套
- 2026年福州英华职业学院单招职业技能测试题库及参考答案详解
- 2026年宁波工程学院单招综合素质考试题库及参考答案详解1套
- 2026年泉州工程职业技术学院单招职业倾向性考试题库含答案详解
- 2026年西安信息职业大学单招职业倾向性测试题库参考答案详解
- 2026年阜阳职业技术学院单招职业适应性测试题库及完整答案详解1套
- 2026年浙江省金华市单招职业适应性考试题库及答案详解1套
- 2026年四川华新现代职业学院单招职业倾向性测试题库及参考答案详解1套
- 2026年阿克苏职业技术学院单招综合素质考试题库及参考答案详解1套
- 2026年德阳农业科技职业学院单招职业适应性测试题库及答案详解1套
- 2025大理州强制隔离戒毒所招聘辅警(5人)笔试考试备考题库及答案解析
- 2025年安全培训计划表
- 2026年榆林职业技术学院单招职业技能测试题库参考答案详解
- 2025年沈阳华晨专用车有限公司公开招聘笔试历年参考题库附带答案详解
- 2026(苏教版)数学五上期末复习大全(知识梳理+易错题+压轴题+模拟卷)
- 2024广东广州市海珠区琶洲街道招聘雇员(协管员)5人 备考题库带答案解析
- 垃圾中转站机械设备日常维护操作指南
- 蓄电池安全管理课件
- 建筑业项目经理目标达成度考核表
- 2025广东肇庆四会市建筑安装工程有限公司招聘工作人员考试参考题库带答案解析
- 第五单元国乐飘香(一)《二泉映月》课件人音版(简谱)初中音乐八年级上册
评论
0/150
提交评论