


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、遗传算法的优缺点遗传算法属于进化算法(Evolutionary Algorithms)的一种,它通过模仿 自然界的选择与遗传的机理来寻找最优解.遗传算法有三个基本算子:选择、交 叉和变异。数值方法求解这一问题的主要手段是迭代运算。一般的迭代方法容易陷入局部极小的陷阱而出现死循环现象,使迭代无 法进行。遗传算法很好地克服了这个缺点,是一种全局优化算法。 生物在漫 长的进化过程中,从低等生物一直发展到高等生物,可以说是一个绝妙的优化 过程。这是自然环境选择的结果。人们研究生物进化现象,总结出进化过程包 括复制、杂交、变异、竞争和选择。一些学者从生物遗传、进化的过程得到启发,提出了遗传算法(GA)。
2、算 法中称遗传的生物体为个体(individual),个体对环境的适应程度用适应值 (fitness)表示。适应值取决于个体的染色体(chromosome),在算法中染色 体常用一串数字表示,数字串中的一位对应一个基因(gene)。一定数量的个 体组成一个群体(population)。对所有个体进行选择、交叉和变异等操作, 生成新的群体,称为新一代(new generation)o遗传算法计算程序的流程可以表示如下3:第一步准备工作 (1)选择合适的编码方案,将变量(特征)转换为染 色体(数字串,串长为m)。通常用二进制编码。 (2)选择合适的参数,包 括群体大小(个体数M)、交叉概率PC和变
3、异概率Pm。 (3)确定适应值函数 f(x)。f(x)应为正值。第二步 形成一个初始群体(含M个个体)。在边坡滑裂面搜索问题中,取 已分析的可能滑裂面组作为初始群体。第三步对每一染色体(串)计算其适应值fi,同时计算群体的总适应值。第四步 选择 计算每一串的选择概率Pi=fi/F及累计概率选择一般通过模 拟旋转滚花轮(roulette,其上按Pi大小分成大小不等的扇形区)的算法进行。 旋转M次即可选出M个串来。在计算机上实现的步骤是:产生0, 1间随机数 r,若rq1,则第一串v1入选,否则选v2,使满足qi-1rpc,则该串参加交叉操作,如此选出参加交叉的一组后,随机配对。(2)对每一对,产
4、生1,m间的随机数以确定交叉的位置。第六步变异 如变异概率为Pm,则可能变异的位数的期望值为Pm XmXM, 每一位以等概率变异。具体为对每一串中的每一位产生0,1间的随机数r, 若rPm,则该位发生反转,如对染色体二进制编码为数字0变为1,1变为0。 如新个体数达到M个,则已形成一个新群体,转向第三步;否则转向第四步继 续遗传操作。直到找到使适应值最大的个体或达到最大进化代数为止。由于选择概率是由适应值决定的,即适应值大的染色体入选概率也较大, 使选择起到择优汰劣的作用。交叉使染色体交换信息,结合选择规则,使优 秀信息得以保存,不良信息被遗弃。变异是基因中得某一位发生突变,以达到 产生确实有
5、实质性差异的新品种。遗传算法虽是一种随机算法,但它是有导向 的,它所使用的按概率随机选择方法是在有方向的搜索方法中的一种工具。 正是这种独特的搜索方法,使遗传算法自然地避开了其它最优化算法常遇到的 局部最小陷阱。遗传算法与传统的优化方法(枚举,启发式等)相比较,以生物进化为原 型,具有很好的收敛性,在计算精度要求时,计算时间少,鲁棒性高等都是它 的优点。遗传算法的优点:与问题领域无关切快速随机的搜索能力。搜索从群体出发,具有潜在的并行性,可以进行多个个体的同时比较, robust.搜索使用评价函数启发,过程简单使用概率机制进行迭代,具有随机性。具有可扩展性,容易与其他算法结合。遗传算法的缺点:
6、1、遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之 后还需要对问题进行解码,2、另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的 选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.3、没有能够及时利用网络的反馈信息,故算法的搜索速度比较慢,要得要 较精确的解需要较多的训练时间。4、算法对初始种群的选择有一定的依赖性,能够结合一些启发算法进行改 进。5、算法的并行机制的潜在能力没有得到充分的利用,这也是当前遗传算法 的一个研究热点方向。在现在的工作中,遗传算法(1972年提出)已经不能很好的解决大规模计 算量问题,它很容易陷入“早熟”。常用混合遗传算法,合作型协同进化算法 等来替代,这些算法都是GA的衍生算法。遗传算法具有良好的全局搜索能力,可以快速地将解空间中的全体解搜索 出,而不会陷入局部最优解的快速下降陷阱;并且利用它的内在并行性,可以 方便地进行分布式计算,加快求解速度。但是遗传算法的局部搜索能力较差, 导致单纯的遗传算法比较费时,在进化后期搜索效率较低。在实际应用中,遗 传算法容易产生早熟收敛的问题。采用何种选择方法既要使优良个体得以保留, 又要维持群体的多样性,一直是遗传算法中较难解决的问题。模拟退火算法虽具有摆脱局部最优解的能力,能够以随机搜索技术从概 率的意义上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安阳市一中学2024年九上物理期末经典试题含解析
- 2025届山东省莱城区刘仲莹中学九年级物理第一学期期末联考模拟试题含解析
- 黑龙江省五常市山林一中学2024年九年级数学第一学期期末联考模拟试题含解析
- 江西省九江市修水县2024-2025学年数学七年级第一学期期末学业水平测试模拟试题含解析
- 四川成都市成华区2025届物理九上期末达标测试试题含解析
- 健身服务会员管理合同
- 酒店餐饮服务采购协议合同书
- 金融风控管理系统定制开发协议
- 车用新能源设备采购协议
- 环保能源项目投资与建设合作协议
- 医疗设备采购计划申请论证表(空)
- 招标代理服务规范
- 小学英语新课程标准解读课件
- 新生儿气胸胸腔穿刺及闭式引流演示文稿
- 易观分析:中国生鲜电商年度综合分析2022
- GB/T 26081-2022排水工程用球墨铸铁管、管件和附件
- GB/T 36761-2018工业用乙二胺
- GB/T 26480-2011阀门的检验和试验
- GB/T 15738-2008导电和抗静电纤维增强塑料电阻率试验方法
- DB63-T 949-2020锅炉安全使用管理规范
- 控制计划CP模板
评论
0/150
提交评论