第四章数字图像处理课件_第1页
第四章数字图像处理课件_第2页
第四章数字图像处理课件_第3页
第四章数字图像处理课件_第4页
第四章数字图像处理课件_第5页
已阅读5页,还剩97页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第四章 数字图像处理中的基本运算图像处理基本运算概述根据数字图像处理运算中输入信息与输出信息的类型,具有代表性的图像处理典型算法从功能上具有以下几种: (1)单幅图像 单幅图像 (2)多幅图像 单幅图像 (3)单幅或多幅图像 数值/符号基本运算类型第一类运算功能是图像处理中最基本的功能;根据输入图像得到输出图像运算的数学特征,可将图像处理运算方式分为: 点运算 代数运算 几何运算1定义2:分类一. 点运算3:应用1. 定义 所谓点运算是指像素值(像素点的灰度值)通过运算之后,可以改善图像的显示效果。这是一种像素的逐点运算。 点运算与相邻的像素之间没有运算关系,是原始图像与目标图像之间的影射关系

2、。是一种简单但却十分有效的图像处理方法。 点运算又称为“对比度增强”、“对比度拉伸”、“灰度变换” 点运算实际上是灰度到灰度的映射过程; 设 输入图像为 A(x ,y) 输出图像为 B(x ,y) 则点运算可表示为: B(x ,y)=fA(x,y) 显然点运算不会改变图像内像素点之间的空间位置关系。2. 分类(1)线性点运算 输出灰度级与输入灰度级呈线性关系的点运算。即:255255 DADB0f(DA)=aDA+bb 如果a1,输出图像的对比度增大25521848提高对比度2550提高对比度举例 如果a1,输出图像的对比度减小2552551420降低对比度降低对比度举例0255255 如果a

3、1,b0,操作仅使所有像素的灰度值上移或下移,其效果是使整个图像更暗或更亮0255255整个图像更亮0255255整个图像更暗如果a1,b0时,输出、输入图像相同0255255 如果a为负值,暗区域将变亮,亮区域将变暗02552550255255线性点运算公式 当图象成像时曝光不足或过度, 或由于成像设备的非线性和图像记录设备动态范围太窄等因素,都会产生对比度不足的弊病,使图像中的细节分辨不清. 这时可通过点运算将灰度范围线性扩展. 设f(x,y)灰度范围为a,b,g(x,y)灰度范围为c,d. 则线性点运算公式为:线性点运算公式(2)分段线性点运算 将感兴趣的灰度范围线性扩展,相对抑制不感兴

4、趣的灰度区域。 设f(x,y)灰度范围为0,Mf,g(x,y)灰度范围为0,Mg,分段线性点运算如下图所示:分段线性点运算公式(3)非线性点运算:输出灰度级与输入灰度级呈非线性关系的点运算。2552550输入输出25512825521825512825532加亮、减暗图像亮度调整加暗、减亮图像对比度拉伸非线性拉伸实例1拉伸效果:图像加亮、减暗非线性拉伸实例2非线性拉伸实例3非线性拉伸实例4非线性拉伸实例5非线性拉伸实例6非线性拉伸实例73. 点运算的应用(1) 对比度增强 在一些数字图像中,技术人员所关注的特征可能仅占据整个灰度级非常小的一个范围。点运算可以扩展所关注部分的灰度信息的对比度,使

5、之占据可显示灰度级的更大部分。又称为对比度拉伸。(2) 光度学标定 点运算可消除图像传感器的非线性的影响。(3) 显示标定 一些显示设备不能保持数字图像上像素的灰度值和显示屏幕上相应点的亮度之间的线性关系。这一缺点可以通过点运算予以克服,即在图像显示之前,先设计合理的点运算关系,可将点运算和显示非线性组合起来互互相抵消,以保持在显示图像时的线性关系。 (4) 轮廓线 点运算可为图像加上轮廓线。 二. 代数运算1、概念2、运算类型及应用1. 概念 代数运算是指两幅输入图像之间进行点对点的加、减、乘、除运算得到输出图像的过程。如果记输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则有

6、如下四种形式: (1) C(x,y) = A(x,y)+ B(x,y) (2) C(x,y) = A(x,y)- B(x,y) (3) C(x,y) = A(x,y)B(x,y) (4) C(x,y) = A(x,y)/B(x,y)2. 运算类型及应用 (1)加运算 (2)减运算 (3)乘运算 (4)除运算(1)加运算C(x,y) = A(x,y) + B(x,y)主要应用举例去除“叠加性”随机噪音生成图像叠加效果去除“叠加性”噪音 对于原图象f(x,y),有一个噪音图像集 g i (x ,y) i =1,2,.M其中:g i (x ,y) = f(x,y) + h(x,y)iM个图像的均值定

7、义为:g(x,y) = 1/M (g0(x,y)+g1(x,y)+ g M (x ,y)当:噪音h(x,y)i为互不相关,且均值为0时,上述图象均值将降低噪音的影响。相加M=1M=2M=4M=16Addition:averaging for noise reduction 生成图象叠加效果:可以得到各种图像合成的效果,也可以用于两张图片的衔接(2)减法运算 C(x,y) = A(x,y) - B(x,y) 主要应用消除背景影响差影法(检测同一场景两幅图像之间的变化) 消除背景影响 即去除不需要的叠加性图案设:背景图像b(x ,y),前景背景混合图像f(x ,y)g(x,y)=f(x,y)b(x

8、,y)g(x,y) 为去除了背景图像 差影法 指把同一景物在不同时间拍摄的图像或同一景物在不同波段的图像相减;差值图像提供了图像间的差异信息,能用于指导动态监测、运动目标检测和跟踪、图像背景消除及目标识别等。 差影法在自动现场监测中的应用 在银行金库内,摄像头每隔一固定时间拍摄一幅图像,并与上一幅图像做差影,如果图像差别超过了预先设置的阈值,则表明可能有异常情况发生,应自动或以某种方式报警;用于遥感图像的动态监测,差值图像可以发现森林火灾、洪水泛滥,监测灾情变化等;也可用于监测河口、海岸的泥沙淤积及监视江河、湖泊、海岸等的污染;利用差值图像还能鉴别出耕地及不同的作物覆盖情况。 差值法的应用举例

9、(a)差影法可以用于混合图像的分离 -=(b) 检测同一场景两幅图像之间的变化 设: 时刻1的图像为T1(x,y), 时刻2的图像为T2(x,y) g(x,y) = T2 (x,y) - T1(x,y)=-T1(x,y)T2(x,y)g(x,y) 求梯度幅度图像的减法运算也可应用于求图像梯度函数 梯度定义形式:梯度幅度 梯度幅度的近似计算: 梯度幅度的应用梯度幅度图像 梯度幅度在边缘处很高;在均匀的肌肉纤维的内部,梯度幅度很低。 (3)乘运算 C(x,y) = A(x,y) * B(x,y) 主要应用举例 图像的局部显示 图像的局部显示(4)除运算 C(x,y) = A(x,y)/ B(x,y

10、)主要应用举例 常用于遥感图像处理中三. 几何运算1. 概念 2. 几何运算类型 图像的几何变换(Geometric Transformation)是指图像处理中对图像平移、旋转、放大和缩小,这些简单变换以及变换中灰度内插处理等。 几何变换可能改变图像中各物体之间的空间位置关系。 几何变换不改变像素值,而可能改变像素所在的位置。1. 概念 空间变换 灰度插值2. 几何运算类型 空间变换(1)齐次坐标 几何变换一般形式 根据几何学知识,上述变换可以实现图像各像素点以坐标原点的比例缩放、反射、错切和旋转等各种变换,但是上述22变换矩阵T不能实现图像的平移以及绕任意点的比例缩放、反射、错切和旋转等变

11、换。 为了能够用统一的矩阵线性变换形式,表示和实现这些常见的图像几何变换,就需要引入一种新的坐标,即齐次坐标。采用齐次坐标可以实现上述各种几何变换的统一表示。 如图所示,则新位置A1(x1,y1) 的坐标为: 表示为如下形式 即不能表示为如下形式: 由于矩阵T中没有引入平移常量,无论a、b、c、d取什么值,都不能实现式平移功能。 不能实现平移变换功能,怎么办?需要进行改进。 将T矩阵扩展为如下23变换矩阵,其形式为: 根据矩阵相乘的规律,在坐标列矩阵x y T中引入第三个元素,扩展为31的列矩阵x y 1T,就可以实现点的平移变换。变换形式如下: 上述变换虽然可以实现图像各像素点的平移变换,但

12、为变换运算时更方便,一般将23阶变换矩阵T进一步扩充为33方阵,即采用如下变换矩阵: 这样一来,平移变换可以用如下形式表示: 这种以n+1维向量表示n维向量的方法称为齐次坐标表示法。齐次坐标的几何意义相当于点(x,y)投影在xyz三维立体空间的z=1的平面上。 空间变换(2)图像的平移 注意:平移后的景物与原图像相同,但“画布”一定是扩大了。否则就会丢失信息。(3)图像的缩小 图像的缩小一般分为按比例缩小和不按比例缩小两种。图像缩小之后,因为承载的信息量小了,所以画布可相应缩小。 空间变换1. 图像按比例缩小: 最简单的是减小一半,这样只需取原图的偶(奇)数行和偶(奇)数列构成新的图像。 2.

13、 图像不按比例缩小: 这种操作因为在x方向和y方向的缩小比例不同,一定会带来图像的几何畸变。(4)图像的放大 图像的缩小操作中,是在现有的信息里如何挑选 所需要的有用信息。 图像的放大操作中,则需对尺寸放大后所多出来的空格填入适当的值,这是信息的估计问题,所以较图像的缩小要复杂一些。 空间变换 1.按比例放大图像 如果需要将原图像放大k倍,则将一个像素值添在新图像的k*k的子块中。放大5倍2. 图像的任意不成比例放大: 这种操作由于x方向和y方向的放大倍数不同,一定带来图像的几何畸变。 放大的方法是: 将原图像的一个像素添到新图像的一个k1*k2的子块中去。返回图像的减半缩小效果返回图像的按比

14、例缩小效果 返回图像的不按比例任意缩小返回图像的成倍放大效果返回图像的不按比例放大返回(5)图像的镜像 水平镜像垂直镜像 空间变换0,0 xy0,0 xy水平镜像的变换结果 图像的垂直镜像 (6)图像的旋转 空间变换0,0 xy图 旋转前的图像 图 旋转15并进行插值处理的图像 图像的旋转注意点: 图像旋转之后,会出现许多的空白点,对这些空白点必须进行填充处理,否则画面效果不好。称这种操作为插值处理。最简单的方法是行插值或是列插值方法:1. 插值的方法是:空点的像素值等于前一点的像素值。2. 同样的操作重复到所有行。经过插值处理之后,图像效果就变得自然。图像的旋转效果返回图像旋转中的插值处理效

15、果返回 如图所示,图像经过了两次45和135旋转变换,旋转360之后,图像(b)的字迹发生了较明显的变化,特别是字体的边缘更为明显。 灰度插值 图像的比例缩放、 旋转变换时等,变换过程需要两个独立的算法: 一个算法完成几何变换; 一个算法用于灰度级插值. 灰度插值最邻近插值法双线性插值(一阶插值)高阶插值数字图像处理只能对坐标网格点(离散点)的值进行变换。而坐标变换后产生的新坐标值同网格点值往往不重合,因此需要通过内插的方法将非网格点的灰度值变换成网格点的灰度值,这种算法称为灰度内插。 最邻近插值法计算与点P(x0,y0)临近的四个点;将与点P(x0,y0)最近的整数坐标点(x,y)的灰度值取为P(x0,y0) 点灰度近似值。 双线性插值根据点P(x0,y0)的四个相邻点的灰度值,通过两次插值计算出灰度值f(x0,y0) 双线性插值公式最邻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论