




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD2如图,已知直线与抛物线相交于A,B两点,且A、B两点
2、在抛物线准线上的投影分别是M,N,若,则的值是( )ABCD3如图是国家统计局于2020年1月9日发布的2018年12月到2019年12月全国居民消费价格的涨跌幅情况折线图.(注:同比是指本期与同期作对比;环比是指本期与上期作对比.如:2019年2月与2018年2月相比较称同比,2019年2月与2019年1月相比较称环比)根据该折线图,下列结论错误的是( ) A2019年12月份,全国居民消费价格环比持平B2018年12月至2019年12月全国居民消费价格环比均上涨C2018年12月至2019年12月全国居民消费价格同比均上涨D2018年11月的全国居民消费价格高于2017年12月的全国居民消
3、费价格4是抛物线上一点,是圆关于直线的对称圆上的一点,则最小值是( )ABCD5数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为.给出下列四个结论:曲线有四条对称轴;曲线上的点到原点的最大距离为;曲线第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为;四叶草面积小于.其中,所有正确结论的序号是( )ABCD6已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为( )A2B3C4D7已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD8直三棱柱中,则直线与所成的
4、角的余弦值为( )ABCD9已知双曲线C:=1(a0,b0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+110阿波罗尼斯(约公元前262190年)证明过这样的命题:平面内到两定点距离之比为常数的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点,间的距离为2,动点与,的距离之比为,当,不共线时,的面积的最大值是( )ABCD11若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则AMB90的概率为8,则下列命题是真命题的是( )Apq B(p)q C
5、p(q) Dq12已知,若方程有唯一解,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若变量,满足约束条件则的最大值是_.14在中,内角的对边分别是,若,则_.15正四棱柱中,.若是侧面内的动点,且,则与平面所成角的正切值的最大值为_.16若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有_.(填上所有正确答案的序号),;,;,;,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在ABC中,角A,B,C的对边分别为a,b,c,且b(a2+c2b2)a2ccos
6、C+ac2cosA(1)求角B的大小;(2)若ABC外接圆的半径为,求ABC面积的最大值.18(12分)设都是正数,且,求证:19(12分)已知曲线的参数方程为(为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)若过点的直线与交于,两点,与交于,两点,求的取值范围.20(12分)某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).
7、若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80元.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.表1:一级滤芯更换频数分布表一级滤芯更换的个数89频数6040图2:二级滤芯更换频数条形图 以100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1
8、个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;(2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;(3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.若,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.21(12分)已知是公比为的无穷等比数列,其前项和为,满足,_是否存在正整数,使得?若存在,求的最小值;若不存在,说明理由从,这三个条件中任选一个,补充在上面问题中并作答22(10分)已知函数(1)讨论的单调性并指出相应单调区间;(2)若,设是函数
9、的两个极值点,若,且恒成立,求实数k的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题2C【解析】直线恒过定点,由此推导出,由此能求出点的坐标,从而能求出的值【
10、详解】设抛物线的准线为,直线恒过定点,如图过A、B分别作于M,于N,由,则,点B为AP的中点、连接OB,则,点B的横坐标为,点B的坐标为,把代入直线,解得,故选:C【点睛】本题考查直线与圆锥曲线中参数的求法,考查抛物线的性质,是中档题,解题时要注意等价转化思想的合理运用,属于中档题.3D【解析】先对图表数据的分析处理,再结简单的合情推理一一检验即可【详解】由折线图易知A、C正确;2019年3月份及6月份的全国居民消费价格环比是负的,所以B错误;设2018年12月份,2018年11月份,2017年12月份的全国居民消费价格分别为,由题意可知,则有,所以D正确.故选:D【点睛】此题考查了对图表数据
11、的分析处理能力及进行简单的合情推理,属于中档题.4C【解析】求出点关于直线的对称点的坐标,进而可得出圆关于直线的对称圆的方程,利用二次函数的基本性质求出的最小值,由此可得出,即可得解.【详解】如下图所示:设点关于直线的对称点为点,则,整理得,解得,即点,所以,圆关于直线的对称圆的方程为,设点,则,当时,取最小值,因此,.故选:C.【点睛】本题考查抛物线上一点到圆上一点最值的计算,同时也考查了两圆关于直线对称性的应用,考查计算能力,属于中等题.5C【解析】利用之间的代换判断出对称轴的条数;利用基本不等式求解出到原点的距离最大值;将面积转化为的关系式,然后根据基本不等式求解出最大值;根据满足的不等
12、式判断出四叶草与对应圆的关系,从而判断出面积是否小于.【详解】:当变为时, 不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;当变为时,不变,所以四叶草图象关于轴对称;综上可知:有四条对称轴,故正确;:因为,所以,所以,所以,取等号时,所以最大距离为,故错误;:设任意一点,所以围成的矩形面积为,因为,所以,所以,取等号时,所以围成矩形面积的最大值为,故正确;:由可知,所以四叶草包含在圆的内部,因为圆的面积为:,所以四叶草的面积小于,故正确.故选:C.【点睛】本题考查曲线与方程的综合运用,其中涉及到曲线的对称性分析以及基本不等式的
13、运用,难度较难.分析方程所表示曲线的对称性,可通过替换方程中去分析证明.6B【解析】因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.7A【解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【详解】不妨设双曲线的一条渐近线与
14、圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.8A【解析】设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,四边形为平行四边形,(或补角)为直线与所成的角,在中,在中,在中,在中,在中,.故选:A.【点睛】本题考查异面直线所
15、成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.9B【解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.10A【解析】根据平面内两定点,间的距离为2,动点与,的距离之比为,利用直接法求得轨迹,然后利用数形结合求解.【详解】如图所示:设,则,化简得,当点到(轴)距离最大时,的面积最大,面积的最大值是.故选:A.【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思
16、想和运算求解的能力,属于中档题.11B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则p是正确的;在边长为4的正方形ABCD内任取一点M,若AMB90的概率为P2=12444=8,即命题q是正确的,故由符合命题的真假的判定规则可得答案 (p)q是正确的,应选答案B。点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题 解决问题的能力。12
17、B【解析】求出的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出的范围即可【详解】解:令,则,则,故,如图示:由,得,函数恒过,由,可得,若方程有唯一解,则或,即或;当即图象相切时,根据,解得舍去),则的范围是,故选:【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题二、填空题:本题共4小题,每小题5分,共20分。139【解析】做出满足条件的可行域,根据图形,即可求出的最大值.【详解】做出不等式组表示的可行域,如图阴影部分所示,目标函数过点时取得最大值,联立,解得,即,所以最大值为9.故答案为:9.【点睛】本题考查二元一次不等式组表示平面区域,利用数形结
18、合求线性目标函数的最值,属于基础题.14【解析】由,根据正弦定理“边化角”,可得,根据余弦定理,结合已知联立方程组,即可求得角.【详解】根据正弦定理:可得根据余弦定理:由已知可得:故可联立方程:解得:.由故答案为:.【点睛】本题主要考查了求三角形的一个内角,解题关键是掌握由正弦定理“边化角”的方法和余弦定理公式,考查了分析能力和计算能力,属于中档题.152.【解析】如图,以为原点建立空间直角坐标系,设点,由得,证明为与平面所成角,令,用三角函数表示出,求解三角函数的最大值得到结果.【详解】如图,以为原点建立空间直角坐标系,设点,则,又,得即;又平面,为与平面所成角,令,当时,最大,即与平面所成
19、角的正切值的最大值为2.故答案为:2【点睛】本题主要考查了立体几何中的动点问题,考查了直线与平面所成角的计算.对于这类题,一般是建立空间直角坐标,在动点坐标内引入参数,将最值问题转化为函数的最值问题求解,考查了学生的运算求解能力和直观想象能力.16【解析】由题意可知,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对,都可以采用此法判断,对分析式子特点可知,进而判断【详解】时,令,则,单调递增, ,即.令,则,单调递减,即,因此,满足题意.时,易知,满足题意.注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为,易知,
20、因此不存在直线满足题意.时,注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:【点睛】本题考查新定义题型、利用导数研究函数图像,转化与化归思想,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)B(2)【解析】(1)由已知结合余弦定理,正弦定理及和两角和的正弦公式进行化简可求cosB,进而可求B;(2)由已知结合正弦定理,余弦定理及基本不等式即可求解ac的范围,然后结合三角形的面积公式即可求解.【详解】(1)因为b(a2+
21、c2b2)ca2cosC+ac2cosA,即2bcosBacosC+ccosA由正弦定理可得,2sinBcosBsinAcosC+sinCcosAsin(A+C)sinB,因为,所以,所以B;(2)由正弦定理可得,b2RsinB2,由余弦定理可得,b2a2+c22accosB,即a2+c2ac4,因为a2+c22ac,所以4a2+c2acac,当且仅当ac时取等号,即ac的最大值4,所以ABC面积S即面积的最大值.【点睛】本题综合考查了正弦定理,余弦定理及三角形的面积公式在求解三角形中的应用,属于中档题.18证明见解析【解析】利用比较法进行证明:把代数式展开、作差、化简可得,可证得成立,同理可
22、证明,由此不等式得证.【详解】证明:因为,,所以 , 成立,又都是正数,同理,【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。19 (1)见解析;(2).【解析】试题分析:(1)利用平方法消去参数,即可得到的普通方程,两边同乘以利用 即可得的直角坐标方程;(2)设直线的参数方程为(为参数),代入,利用韦达定理、直线参数方程的几何意义以及三角函数的有界性可得结果.试题解析:(1)曲线的普通方程为,曲线的直角坐标方程为 ; (2)设直线的参数方程为(为参数)又直线与曲线:存在两个交点,因此. 联立直线与曲线:可得则联
23、立直线与曲线:可得,则即20(1)0.024;(2)分布列见解析,;(3)【解析】(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,而由一级滤芯更换频数分布表和二级滤芯更换频数条形图可知,一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,再由乘法原理可求出概率;(2)由二级滤芯更换频数条形图可知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,而的可能取值为8,9,10,11,12,然后求出概率,可得到的分布列及数学期望
24、;(3)由,且,可知若,则,或若,则,再分别计算两种情况下的所需总费用的期望值比较大小即可.【详解】(1)由题意知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16,则该套净水系统中一个一级过滤器需要更换8个滤芯,两个二级过滤器均需要更换4个滤芯,设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16”为事件,因为一个一级过滤器需要更换8个滤芯的概率为0.6,二级过滤器需要更换4个滤芯的概率为0.2,所以.(2)由柱状图知,一个二级过滤器需要更换滤芯的个数为4,5,6的概率分别为0.2,0.4,0.4,由题意的可能取值为8,9,10,11,12,从而,.所以的分布列为891011120.040.160.320.320.16(个).或用分数表示也可以为89101112(个).(3)解法一:记表示该客户的净水系统在使用期内购买各级滤芯所需总费用(单位:元)因为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 版企业培训合作合同
- 运动自行车品牌代理合同
- 新疆沙雅县市级名校2025届初三下学期英语试题分类汇编含答案
- 五金制品锯类购销协议
- 小型企业劳动合同模板
- 土地使用权买卖合同模板范本
- 商场店铺租赁合同范本
- 冀教版小学数学六年级下册小升初毕业会考模拟卷(三) (含答案)
- 2025年云南省曲靖市沾益区民族中学中考历史一模试卷(含答案)
- 智能设备服务合同
- 2025山东省港口集团有限公司招聘183人笔试参考题库附带答案详解
- 2025青桐鸣高三4月大联考数学试题及答案
- 水利部珠江水利委员会所属事业单位招聘笔试真题2024
- 甘肃省2025年甘肃高三月考试卷(四4月)(甘肃二诊)(英语试题+答案)
- 2025年河南建筑职业技术学院高职单招语文2019-2024历年真题考点试卷含答案解析
- 企业交叉作业协议书
- 2025届湖北省武汉市高考数学一模试卷含解析
- 平凡之路歌词
- 教师资格证统计表
- 气柜施工方案
- 《膀胱结石的护理》PPT课件.ppt
评论
0/150
提交评论