




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数,若函数在上有3个零点,则实数的取值范围为( )ABCD22019年末,武汉出现新型冠状病毒肺炎()疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发
2、现的冠状病毒新毒株,所以目前没有特异治疗方法,防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和与确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,一户6口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭成员随机地逐一进行“核糖核酸”检测,若出现阳性,则该家庭为“感染高危户”.设该家庭每个成员检测呈阳性的概率均为()且相互独立,该家庭至少检测了5个人才能确定为“感染高危户”的概率为,当时,最大,则( )ABCD3定义:
3、表示不等式的解集中的整数解之和.若,则实数的取值范围是ABCD4已知,则( )ABCD5一个由两个圆柱组合而成的密闭容器内装有部分液体,小圆柱底面半径为,大圆柱底面半径为,如图1放置容器时,液面以上空余部分的高为,如图2放置容器时,液面以上空余部分的高为,则( )ABCD6抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是( )ABCD7已知双曲线的右焦点为F,过右顶点A且与x轴垂直的直线交双曲线的一条渐近线于M点,MF的中点恰好在双曲线C上,则C的离心率为( )ABCD8某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各
4、种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元9在中,点为中点,过点的直线与,所在直线分别交于点,若,则的最小值为( )AB2C3D10已知集合,集合,若,则( )ABCD11已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD12已知数列为等比数列,若,且,则( )AB或CD二、填空题:本题共4小题,每小题5分,共20分。13已知定义在的函数满足,且当时,则的解集为_.14已知直线与圆心为的圆相交于两点,且,则实数的值为_15连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的正方体),
5、观察向上的点数,则事件“点数之积是3的倍数”的概率为_16已知数列满足对任意,若,则数列的通项公式_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在ABC中,角A,B,C的对边分别是a,b,c,.(1)求cosC;(2)若b7,D是BC边上的点,且ACD的面积为,求sinADB.18(12分)在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴,建立极坐标系.已知点的直角坐标为,过的直线与曲线相交于,两点.(1)若的斜率为2,求的极坐标方程和曲线的普通方程;(2)求的值.19(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求
6、证: 20(12分)已知在中,角,的对边分别为,的面积为.(1)求证:;(2)若,求的值.21(12分)如图,在三棱柱中,为的中点,且.(1)求证:平面;(2)求锐二面角的余弦值.22(10分)中国古代数学经典数书九章中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PD于M(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.参
7、考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】根据分段函数,分当,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,令,在是增函数,时,有一个零点,当时,令当时,在上单调递增,当时,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为, 故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.2A【解析】根据题意分别求出事件A:检测5个人确定为“感染高危户”发生的概率和事件B:检测6个人确定
8、为“感染高危户”发生的概率,即可得出的表达式,再根据基本不等式即可求出.【详解】设事件A:检测5个人确定为“感染高危户”,事件B:检测6个人确定为“感染高危户”,.即设,则当且仅当即时取等号,即.故选:A【点睛】本题主要考查概率的计算,涉及相互独立事件同时发生的概率公式的应用,互斥事件概率加法公式的应用,以及基本不等式的应用,解题关键是对题意的理解和事件的分解,意在考查学生的数学运算能力和数学建模能力,属于较难题.3D【解析】由题意得,表示不等式的解集中整数解之和为6.当时,数形结合(如图)得的解集中的整数解有无数多个,解集中的整数解之和一定大于6.当时,数形结合(如图),由解得.在内有3个整
9、数解,为1,2,3,满足,所以符合题意.当时,作出函数和的图象,如图所示. 若,即的整数解只有1,2,3.只需满足,即,解得,所以.综上,当时,实数的取值范围是.故选D.4D【解析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,所以,所以A,B两项均错;又,所以,所以C错;对于D,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具
10、体值,进而得到大小关系.5B【解析】根据空余部分体积相等列出等式即可求解.【详解】在图1中,液面以上空余部分的体积为;在图2中,液面以上空余部分的体积为.因为,所以.故选:B【点睛】本题考查圆柱的体积,属于基础题.6A【解析】首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个, 具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1_ _,_1_,_ _1剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计
11、算时会有重复,重复数量为,事件的样本点数为:个故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题7A【解析】设,则MF的中点坐标为,代入双曲线的方程可得的关系,再转化成关于的齐次方程,求出的值,即可得答案.【详解】双曲线的右顶点为,右焦点为, M所在直线为,不妨设,MF的中点坐标为.代入方程可得,(负值舍去).故选:A.【点睛】本题考查双曲线的离心率,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意构造的齐次方程.8A【解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费用,再根据年的就医
12、费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.9B【解析】由,三点共线,可得,转化,利用均值不等式,即得解.【详解】因为点为中点,所以,又因为,所以因为,三点共线,所以,所以,当且仅当即时等号成立,所以的最小值为1故
13、选:B【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.10A【解析】根据或,验证交集后求得的值.【详解】因为,所以或.当时,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.11A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.12A【解析】根据等比数列
14、的性质可得,通分化简即可.【详解】由题意,数列为等比数列,则,又,即,所以,.故选:A.【点睛】本题考查了等比数列的性质,考查了推理能力与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由已知得出函数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,得时,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解,关键得出函数的奇偶性,单调性,属于中档题.140或6【解析】计算得
15、到圆心,半径,根据得到,利用圆心到直线的距离公式解得答案.【详解】,即,圆心,半径.,故圆心到直线的距离为,即,故或.故答案为:或.【点睛】本题考查了根据直线和圆的位置关系求参数,意在考查学生的计算能力和转化能力。15【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。16【解析】由可得,利用等比数列的通项公式可得,再利用累加法求和与等比数列的求和公式,即可得出结论.【详解】由,得,数列是等比数列,首项为2,公比为2,满足上式,.故答案为:.【点睛】本题考查数列的通项公式,递推公式转化
16、为等比数列是解题的关键,利用累加法求通项公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)根据诱导公式和二倍角公式,将已知等式化为角关系式,求出,再由二倍角余弦公式,即可求解;(2)在中,根据面积公式求出长,根据余弦定理求出,由正弦定理求出,即可求出结论.【详解】(1),;(2)在中,由(1)得,由余弦定理得,在中,.【点睛】本题考查三角恒等变换求值、面积公式、余弦定理、正弦定理解三角形,考查计算求解能力,属于中档题.18(1):,:;(2)【解析】(1)根据点斜式写出直线的直角坐标方程,并转化为极坐标方程,利用,将曲线的参数方程
17、转化为普通方程.(2)将直线的参数方程代入曲线的普通方程,结合直线参数的几何意义以及根与系数关系,求得的值.【详解】(1)的直角坐标方程为,即,则的极坐标方程为.曲线的普通方程为.(2)直线的参数方程为(为参数,为的倾斜角),代入曲线的普通方程,得. 设,对应的参数分别为,所以,在的两侧.则.【点睛】本小题主要考查直角坐标化为极坐标,考查参数方程化为普通方程,考查直线参数方程,考查直线参数的几何意义,属于中档题.19(1);(2)见解析.【解析】(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可
18、得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,则,当时,单调递增;当时,单调递减;有最大值,.(2)证明:由(1)知,当时,即,令,则,令,则,在上是增函数,又,当时,;当时,在上是减函数,在上是增函数,即,【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.20(1)证明见解析;(2).【解析】(1)利用,利用正弦定理,化简即可证明(2)利用(1),得到当时,得出,得出,然后可得【详解】证明:(1)据题意,得,.又,.解:(2)由(1)求解知,.当时,.又,.【点睛】本题考查正弦与余弦定理的应用,属于基础题21(1)证明见解析;(2).【解析】(1)证明后可得平面,从而得,结合已知得线面垂直;(2)以为坐标原点,以为轴,为轴,为建立空间直角坐标系,设,写
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 版企业培训合作合同
- 运动自行车品牌代理合同
- 新疆沙雅县市级名校2025届初三下学期英语试题分类汇编含答案
- 五金制品锯类购销协议
- 小型企业劳动合同模板
- 土地使用权买卖合同模板范本
- 商场店铺租赁合同范本
- 冀教版小学数学六年级下册小升初毕业会考模拟卷(三) (含答案)
- 2025年云南省曲靖市沾益区民族中学中考历史一模试卷(含答案)
- 智能设备服务合同
- 探究中医药知识图谱-洞察分析
- 六年级工程问题30道应用题
- 08D800-6 民用建筑电气设计与施工-室内布线
- 2024年广西高考生物试卷真题(含答案)
- 2024年资格考试-良好农业规范认证检查员考试近5年真题附答案
- 2024-2025学年小学科学六年级下册湘科版(2024)教学设计合集
- 建筑施工安全检查标准JGJ59-2011
- 职业生涯人物访谈报告
- 幼儿园 小班健康《汉堡男孩》
- 2023年江西省赣州市寻乌县残联公务员考试《行政职业能力测验》历年真题及详解
- 2023年上海市虹口区街道社区工作者招聘考试真题及答案
评论
0/150
提交评论