湖南名师联盟2022年高三第六次模拟考试数学试卷含解析_第1页
湖南名师联盟2022年高三第六次模拟考试数学试卷含解析_第2页
湖南名师联盟2022年高三第六次模拟考试数学试卷含解析_第3页
湖南名师联盟2022年高三第六次模拟考试数学试卷含解析_第4页
湖南名师联盟2022年高三第六次模拟考试数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知边长为4的菱形,为的中点,为平面内一点,若,则( )A16B14C12D82已知实数、满足约束条件,则的最大值为( )ABCD3已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-24若,满足约束条件,则

2、的取值范围为( )ABCD5执行程序框图,则输出的数值为( )ABCD6过双曲线的右焦点F作双曲线C的一条弦AB,且,若以AB为直径的圆经过双曲线C的左顶点,则双曲线C的离心率为( )ABC2D7已知双曲线的焦距是虚轴长的2倍,则双曲线的渐近线方程为( )ABCD8若的展开式中的常数项为-12,则实数的值为( )A-2B-3C2D39已知函数在上有两个零点,则的取值范围是( )ABCD10已知集合,则( )ABCD11已知定点都在平面内,定点是内异于的动点,且,那么动点在平面内的轨迹是( )A圆,但要去掉两个点B椭圆,但要去掉两个点C双曲线,但要去掉两个点D抛物线,但要去掉两个点12设集合A=

3、4,5,7,9,B=3,4,7,8,9,全集U=AB,则集合中的元素共有 ( )A3个B4个C5个D6个二、填空题:本题共4小题,每小题5分,共20分。13如图,在棱长为2的正方体中,点、分别是棱,的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是_.14已知实数,满足约束条件,则的最小值为_.15函数(为自然对数的底数,),若函数恰有个零点,则实数的取值范围为_.16若将函数的图象沿轴向右平移个单位后所得的图象与的图象关于轴对称,则的最小值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在三棱锥ABCD中,ABAD,BCBD,平面AB

4、D平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.18(12分)在平面直角坐标系中,有一个微型智能机器人(大小不计)只能沿着坐标轴的正方向或负方向行进,且每一步只能行进1个单位长度,例如:该机器人在点处时,下一步可行进到、这四个点中的任一位置记该机器人从坐标原点出发、行进步后落在轴上的不同走法的种数为(1)分别求、的值;(2)求的表达式19(12分)已知凸边形的面积为1,边长,其内部一点到边的距离分别为.求证:.20(12分)已知函数的最小正周期是,且当时,取得最大值(1)求的解析式;(2)作出在上的图象(要列表)21(12

5、分)设函数,其中是自然对数的底数.()若在上存在两个极值点,求的取值范围;()若,函数与函数的图象交于,且线段的中点为,证明:.22(10分)已知矩阵,且二阶矩阵M满足AMB,求M的特征值及属于各特征值的一个特征向量.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【详解】取中点,连接,即.,则.故选:.【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.2

6、C【解析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.3D【解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.4B【解析】根据约束条件作出可行域,找到

7、使直线的截距取最值得点,相应坐标代入即可求得取值范围.【详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【点睛】本题考查根据线性规划求范围,属于基础题.5C【解析】由题知:该程序框图是利用循环结构计算并输出变量的值,计算程序框图的运行结果即可得到答案.【详解】,满足条件,满足条件,满足条件,满足条件,不满足条件,输出.故选:C【点睛】本题主要考查程序框图中的循环结构,属于简单题.6C【解析】由得F是弦AB的中点.进而得AB垂直于x轴,得,再结合关系求解即可【详解】因为,所以F是弦AB的中点.且AB垂直于x轴.因为以AB为直径的圆经过双曲线

8、C的左顶点,所以,即,则,故.故选:C【点睛】本题是对双曲线的渐近线以及离心率的综合考查,是考查基本知识,属于基础题7A【解析】根据双曲线的焦距是虚轴长的2倍,可得出,结合,得出,即可求出双曲线的渐近线方程.【详解】解:由双曲线可知,焦点在轴上,则双曲线的渐近线方程为:,由于焦距是虚轴长的2倍,可得:,即:,所以双曲线的渐近线方程为:.故选:A.【点睛】本题考查双曲线的简单几何性质,以及双曲线的渐近线方程.8C【解析】先研究的展开式的通项,再分中,取和两种情况求解.【详解】因为的展开式的通项为,所以的展开式中的常数项为:,解得,故选:C.【点睛】本题主要考查二项式定理的通项公式,还考查了运算求

9、解的能力,属于基础题.9C【解析】对函数求导,对a分类讨论,分别求得函数的单调性及极值,结合端点处的函数值进行判断求解.【详解】 ,.当时,在上单调递增,不合题意.当时,在上单调递减,也不合题意.当时,则时,在上单调递减,时,在上单调递增,又,所以在上有两个零点,只需即可,解得.综上,的取值范围是.故选C.【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题10C【解析】求出集合,计算出和,即可得出结论.【详解】,.故选:C.【点睛】本题考查交集和并集的计算,考查计算能力,属于基础题.11A【解析】根据题意可得,即知C在以AB为直径的圆上.【详解】,,,又,,

10、平面,又平面,故在以为直径的圆上,又是内异于的动点,所以的轨迹是圆,但要去掉两个点A,B故选:A【点睛】本题主要考查了线面垂直、线线垂直的判定,圆的性质,轨迹问题,属于中档题.12A【解析】试题分析:,所以,即集合中共有3个元素,故选A考点:集合的运算二、填空题:本题共4小题,每小题5分,共20分。13【解析】取中点,连结,推导出平面平面,从而点在线段上运动,作于,由,能求出线段长度的取值范围【详解】取中点,连结,在棱长为2的正方体中,点、分别是棱、的中点,平面平面,是侧面正方形内一点(含边界),平面,点在线段上运动,在等腰中,作于,由等面积法解得:,线段长度的取值范围是,故答案为:,【点睛】

11、本题考查线段长的取值范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题14【解析】作出满足约束条件的可行域,将目标函数视为可行解与点的斜率,观察图形斜率最小在点B处,联立,解得点B坐标,即可求得答案.【详解】作出满足约束条件的可行域,该目标函数视为可行解与点的斜率,故由题可知,联立得,联立得所以,故所以的最小值为故答案为:【点睛】本题考查分式型目标函数的线性规划问题,属于简单题.15【解析】令,则,恰有四个解.由判断函数增减性,求出最小值,列出相应不等式求解得出的取值范围.【详解】解:令,则,恰有四个解.有两个解,由,可得在上单调递减,在上单调递增,则,可

12、得.设的负根为,由题意知,则,.故答案为:.【点睛】本题考查导数在函数当中的应用,属于难题.16【解析】由题意利用函数的图象变换规律,三角函数的图像的对称性,求得的最小值.【详解】解:将函数的图象沿轴向右平移个单位长度,可得的图象.根据图象与的图象关于轴对称,可得,即时,的最小值为.故答案为:.【点睛】本题主要考查函数的图象变换规律,正弦函数图像的对称性,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)见解析【解析】试题分析:(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由ABAD及线面垂直判定定

13、理得AD平面ABC,即可得ADAC试题解析:证明:(1)在平面内,因为ABAD,所以.又因为平面ABC,平面ABC,所以EF平面ABC.(2)因为平面ABD平面BCD,平面平面BCD=BD, 平面BCD,所以平面.因为平面,所以 .又ABAD,平面ABC,平面ABC,所以AD平面ABC,又因为AC平面ABC,所以ADAC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18(1),(2)【解析】(1)根据机器人的进行规律可确定、的值;(2)首先根据机器人行进

14、规则知机器人沿轴行进步,必须沿轴负方向行进相同的步数,而余下的每一步行进方向都有两个选择(向上或向下),由此结合组合知识确定机器人的每一种走法关于的表达式,并得到的表达式,然后结合二项式定理及展开式的通项公式进行求解.【详解】解:(1),(2)设为沿轴正方向走的步数(每一步长度为1),则反方向也需要走步才能回到轴上,所以,1,2,(其中为不超过的最大整数)总共走步,首先任选步沿轴正方向走,再在剩下的步中选步沿轴负方向走,最后剩下的每一步都有两种选择(向上或向下),即 等价于求中含项的系数,为其中含项的系数为 故【点睛】本题考查组合数、二项式定理,考查学生的逻辑推理能力,推理论证能力以及分类讨论

15、的思想.19证明见解析【解析】由已知,易得,所以利用柯西不等式和基本不等式即可证明.【详解】因为凸边形的面积为1,所以,所以(由柯西不等式得)(由均值不等式得)【点睛】本题考查利用柯西不等式、基本不等式证明不等式的问题,考查学生对不等式灵活运用的能力,是一道容易题.20(1);(2)见解析.【解析】(1)根据函数的最小正周期可求出的值,由该函数的最大值可得出的值,再由,结合的取值范围可求得的值,由此可得出函数的解析式;(2)由计算出的取值范围,据此列表、描点、连线可得出函数在区间上的图象.【详解】(1)因为函数的最小正周期是,所以又因为当时,函数取得最大值,所以,同时,得,因为,所以,所以;(

16、2)因为,所以,列表如下:描点、连线得图象:【点睛】本题考查正弦函数解析式的求解,同时也考查了利用五点作图法作图,考查分析问题与解决问题的能力,属于中等题.21();()详见解析.【解析】()依题意在上存在两个极值点,等价于在有两个不等实根,由参变分类可得,令,利用导数研究的单调性、极值,从而得到参数的取值范围;()由题解得,要证成立,只需证:,即:,只需证:,设,即证:,再分别证明,即可;【详解】解:()由题意可知,在上存在两个极值点,等价于在有两个不等实根,由可得,令,则,令,可得,当时,所以在上单调递减,且当时,单调递增;当时,单调递减;所以是的极大值也是最大值,又当,当大于0趋向与0,要使在有两个根,则,所以的取值范围为;()由题解得,要证成立,只需证:即:,只需证:设,即证:要证,只需证:令,则在上为增函数,即成立;要证,只需

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论