湖北省枣阳市2021-2022学年高考仿真模拟数学试卷含解析_第1页
湖北省枣阳市2021-2022学年高考仿真模拟数学试卷含解析_第2页
湖北省枣阳市2021-2022学年高考仿真模拟数学试卷含解析_第3页
湖北省枣阳市2021-2022学年高考仿真模拟数学试卷含解析_第4页
湖北省枣阳市2021-2022学年高考仿真模拟数学试卷含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1函数在上的图象大致为( )ABCD2已知椭圆:的左、右焦点分别为,点,在椭圆上,其中,若,则椭圆的离心率的取值范围

2、为( )ABCD3函数的图象可能为( )ABCD4下列函数中,在区间上为减函数的是( )ABCD5在平面直角坐标系xOy中,已知椭圆的右焦点为,若F到直线的距离为,则E的离心率为( )ABCD6在声学中,声强级(单位:)由公式给出,其中为声强(单位:).,那么( )ABCD7已知函数的图象如图所示,则可以为( )ABCD8设全集U=R,集合,则()ABCD9已知复数,则的虚部为( )ABCD110己知四棱锥中,四边形为等腰梯形,是等边三角形,且;若点在四棱锥的外接球面上运动,记点到平面的距离为,若平面平面,则的最大值为( )ABCD11如图是函数在区间上的图象,为了得到这个函数的图象,只需将的

3、图象上的所有的点( )A向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变12正项等差数列的前和为,已知,则=( )A35B36C45D54二、填空题:本题共4小题,每小题5分,共20分。13已知数列为等差数列,数列为等比数列,满足,其中,则的值为_14已知数列an的前n项和为Sn,向量(4,n),(Sn,n+3).若,则数列前2020项和为_15在平面直角坐标系xOy中,己知直线与函

4、数的图象在y轴右侧的公共点从左到右依次为,若点的横坐标为1,则点的横坐标为_.16设,满足条件,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的面积为,且.(1)求角的大小及长的最小值;(2)设为的中点,且,的平分线交于点,求线段的长.18(12分)已知,求证:(1);(2).19(12分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.()求椭圆的标准方程;()是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.20(12分)在直角坐标系中,以坐标原点为极点,轴正半轴为极

5、轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.(1)求曲线的极坐标方程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.21(12分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.22(10分)已知在多面体中,平面平面,且四边形为正方形,且/,点,分别是,的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得;【详解】解:

6、依题意,故函数为偶函数,图象关于轴对称,排除C;而,排除B;,排除D.故选:.【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.2C【解析】根据可得四边形为矩形, 设,根据椭圆的定义以及勾股定理可得,再分析的取值范围,进而求得再求离心率的范围即可.【详解】设,由,知,因为,在椭圆上,所以四边形为矩形,;由,可得,由椭圆的定义可得,平方相减可得,由得;令,令,所以,即,所以,所以,所以,解得.故选:C【点睛】本题主要考查了椭圆的定义运用以及构造齐次式求椭圆的离心率的问题,属于中档题.3C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B

7、,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.4C【解析】利用基本初等函数的单调性判断各选项中函数在区间上的单调性,进而可得出结果.【详解】对于A选项,函数在区间上为增函数;对于B选项,函数在区间上为增函数;对于C选项,函数在区间上为减函数;对于D选项,函数在区间上为增函数.故选:C.【点睛】本题考查函数在区间上单调性的判断,熟悉一些常见的基本初等函数的单调性是判断的关键,属于基础题.5A【解析】由已知可得到直线的倾斜角为,有,再利用即可解决.【详解】由F到直线的距离为,得直线的倾斜角为,所以,即,解得.故选:A.【点睛】本题考查椭圆离心率的问题,一般求椭圆

8、离心率的问题时,通常是构造关于的方程或不等式,本题是一道容易题.6D【解析】由得,分别算出和的值,从而得到的值.【详解】,当时,当时,故选:D.【点睛】本小题主要考查对数运算,属于基础题.7A【解析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的

9、直观想象能力和逻辑推理能力,属于容易题8A【解析】求出集合M和集合N,,利用集合交集补集的定义进行计算即可【详解】,则,故选:A【点睛】本题考查集合的交集和补集的运算,考查指数不等式和二次不等式的解法,属于基础题9C【解析】先将,化简转化为,再得到下结论.【详解】已知复数,所以,所以的虚部为-1.故选:C【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.10A【解析】根据平面平面,四边形为等腰梯形,则球心在过的中点的面的垂线上,又是等边三角形,所以球心也在过的外心面的垂线上,从而找到球心,再根据已知量求解即可.【详解】依题意如图所示:取的中点,则是等腰梯形外接圆的圆心,

10、取是的外心,作平面平面,则是四棱锥的外接球球心,且,设四棱锥的外接球半径为,则,而,所以,故选:A.【点睛】本题考查组合体、球,还考查空间想象能力以及数形结合的思想,属于难题.11A【解析】由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,又,又,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.12C【解析】由等差数列通项公式得,求出,再利用等差数列

11、前项和公式能求出.【详解】正项等差数列的前项和,解得或(舍),故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题. 解等差数列问题要注意应用等差数列的性质()与前 项和的关系.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据题意,判断出,根据等比数列的性质可得,再令数列中的,根据等差数列的性质,列出等式,求出和的值即可.【详解】解:由,其中,可得,则,令,可得.又令数列中的,根据等差数列的性质,可得,所以.根据得出,.所以.故答案为.【点睛】本题主要考查等差数列、等比数列的性质,属于基础题.14【解析】由已知可得4Snn(n+3)0,可得Sn,n1时,a1S11.

12、当n2时,anSnSn1.可得:2().利用裂项求和方法即可得出.【详解】,4Snn(n+3)0,Sn,n1时,a1S11.当n2时,anSnSn1.,满足上式,.2().数列前2020项和为2(1)2(1).故答案为:.【点睛】本题考查了向量垂直与数量积的关系、数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.151【解析】当时,得,或,依题意可得,可求得,继而可得答案【详解】因为点的横坐标为1,即当时,所以或,又直线与函数的图象在轴右侧的公共点从左到右依次为,所以,故,所以函数的关系式为当时,(1),即点的横坐标为1,为二函数的图象的第二个公共点故答案为:1【点睛】本题考查

13、三角函数关系式的恒等变换、正弦型函数的性质的应用,主要考查学生的运算能力及思维能力,属于中档题16【解析】作出可行域,由得,平移直线,数形结合可求的最大值.【详解】作出可行域如图所示由得,则是直线在轴上的截距.平移直线,当直线经过可行域内的点时,最小,此时最大.解方程组,得,.故答案为:.【点睛】本题考查简单的线性规划,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),;(2).【解析】(1)根据面积公式和数量积性质求角及最大边;(2)根据的长度求出,再根据面积比值求,从而求出【详解】(1)在中,由,得,由,得,所以,所以,因为在中,所以,因为(当且仅当时取

14、等),所以长的最小值为;(2)在三角形中,因为为中线,所以,所以,因为,所以,所以,由(1)知,所以,或,所以,因为为角平分线,或2,所以,或,所以【点睛】本题考查了平面向量数量积的性质及其运算,余弦定理解三角形及三角形面积公式的应用,属于中档题18(1)见解析;(2)见解析【解析】(1)结合基本不等式可证明;(2)利用基本不等式得,即,同理得其他两个式子,三式相加可证结论【详解】(1),当且仅当a=b=c等号成立,;(2)由基本不等式,同理,当且仅当a=b=c等号成立【点睛】本题考查不等式的证明,考查用基本不等式证明不等式成立解题关键是发现基本不等式的形式,方法是综合法19();()【解析】

15、()设点的坐标,表达出直线的斜率之积,再根据三点均在椭圆上,根据椭圆的方程代入斜率之积的表达式列式求解即可.()设直线的方程为,根据直线的斜率之积为可得,再联立直线与椭圆的方程,表达出面积公式,再换元利用基本不等式求解即可.【详解】()设,则,又,故,即,故,又,故.故椭圆的标准方程为.()设直线的方程为,由 ,故,又,故,因为处的切线相互垂直故.故直线的方程为.联立故.故,代入韦达定理有设,则.当且仅当时取等号.故的面积的最大值为.【点睛】本题主要考查了根据椭圆上的点坐标满足的关系式求解椭圆基本量求方程的方法,同时也考查了抛物线的切线问题以及椭圆中面积的最值问题,需要根据导数的几何意义求切线

16、斜率,再换元利用基本不等式求解.属于难题.20(1),;(2).【解析】(1)由曲线的参数方程消去参数可得曲线的普通方程,由此可求曲线的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线的普通方程,整理得,利用韦达定理,根据为的中点,解出即可.【详解】(1)由(为参数)消去参数,可得,即,已知曲线的普通方程为,即,曲线的极坐标方程为,直线经过点,且倾斜角为,直线的参数方程:(为参数,).(2)设对应的参数分别为,.将直线的参数方程代入并整理,得,.又为的中点,即,即,.【点睛】本题考查了圆的参数方程与极坐标方程之间的互化以及直线参数方程的应用,

17、考查了计算能力,属于中档题.21(1)见解析;(2)【解析】(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.【详解】(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.由题意易知,所以,因为,所以平面,又平面,所以.(2)设,由已知可得:平面平面,所以,同理可得:,所以四边形为平行四边形,所以为的中点,为的中点,所以平行且相等,从而平面,又,所以,两两垂直,如图,建立空间直角坐标系,由平面几何知识,得.则,所以,.设平面的法向量为,由,可得,令,则,所以.同理,平面的一个法向量为.设平面与平面所成角为,则,所以.【点睛】本题考查了线面垂直的判定定理及二面角的平面角的求法,重点考查了空间向量的应用,属中档题.22(1)证明见解析;(2).【解析】(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论