广东省佛山市华南师范大学附中2021-2022学年高考临考冲刺数学试卷含解析_第1页
广东省佛山市华南师范大学附中2021-2022学年高考临考冲刺数学试卷含解析_第2页
广东省佛山市华南师范大学附中2021-2022学年高考临考冲刺数学试卷含解析_第3页
广东省佛山市华南师范大学附中2021-2022学年高考临考冲刺数学试卷含解析_第4页
广东省佛山市华南师范大学附中2021-2022学年高考临考冲刺数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1已知,则“直线与直线垂直”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件2已知复数满足,则的共轭复数是( )ABCD3已知定义在上的偶函数,当时,设,则( )ABCD4函数的图象大致是( )ABCD5执行如图所示的程序框图,若输出的,则输入的整数的最大值为( )A7B15C31D636某人2018年的家庭总收人为元,各种用途占比如图中的折线图,年家庭总收入的各种用途占比统计如图中的条形图,已知年的就医费用比年的就医费用增加了元,则该人年的储畜费用为( )A元B元C元D元7在三角形中,求( )ABCD8已知集合,集合,则( )ABCD9以,为直径的圆的方

3、程是ABCD10已知,是两条不重合的直线,是两个不重合的平面,则下列命题中错误的是( )A若,则或B若,则C若,则D若,则11已知函数是上的减函数,当最小时,若函数恰有两个零点,则实数的取值范围是( )ABCD12已知(i为虚数单位,),则ab等于( )A2B-2CD二、填空题:本题共4小题,每小题5分,共20分。13在平面直角坐标系中,点在单位圆上,设,且若,则的值为_.14设点P在函数的图象上,点Q在函数的图象上,则线段PQ长度的最小值为_15已知的展开式中含有的项的系数是,则展开式中各项系数和为_.16在中,内角A,B,C的对边分别是a,b,c,且,则_.三、解答题:共70分。解答应写出

4、文字说明、证明过程或演算步骤。17(12分)已知分别是椭圆的左焦点和右焦点,椭圆的离心率为是椭圆上两点,点满足.(1)求的方程;(2)若点在圆上,点为坐标原点,求的取值范围.18(12分)在直角坐标系中,椭圆的左、右焦点分别为,点在椭圆上且轴,直线交轴于点,椭圆的离心率为.(1)求椭圆的方程;(2)过的直线交椭圆于两点,且满足,求的面积.19(12分)在中,、的对应边分别为、,已知,.(1)求;(2)设为中点,求的长.20(12分)在四棱锥中,是等边三角形,点在棱上,平面平面(1)求证:平面平面;(2)若,求直线与平面所成角的正弦值的最大值;(3)设直线与平面相交于点,若,求的值21(12分)

5、在直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求和的直角坐标方程;(2)已知为曲线上的一个动点,求线段的中点到直线的最大距离22(10分)已知数列的前项和为,且满足,各项均为正数的等比数列满足(1)求数列的通项公式;(2)若,求数列的前项和参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由两直线垂直求得则或,再根据充要条件的判定方法,即可求解.【详解】由题意,“直线与直线垂直”则,解得或,所以“直线与直线垂直”是“”的必要不充分条件,故选B.【点睛】本题

6、主要考查了两直线的位置关系,及必要不充分条件的判定,其中解答中利用两直线的位置关系求得的值,同时熟记充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.2B【解析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.3B【解析】根据偶函数性质,可判断关系;由时,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【详解】为定义在上的偶函数,所以所以;当时,则,令则,当时,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【点

7、睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.4B【解析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,则的定义域为.,当,单增,当,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.5B【解析】试题分析:由程序框图可知:,;,;,;,;,. 第步后输出,此时,则的最大值为15,故选B.考点:程序框图.6A【解析】根据 2018年的家庭总收人为元,且就医费用占 得到就医费

8、用,再根据年的就医费用比年的就医费用增加了元,得到年的就医费用,然后由年的就医费用占总收人,得到2019年的家庭总收人再根据储畜费用占总收人求解.【详解】因为2018年的家庭总收人为元,且就医费用占 所以就医费用因为年的就医费用比年的就医费用增加了元,所以年的就医费用元,而年的就医费用占总收人所以2019年的家庭总收人为而储畜费用占总收人所以储畜费用:故选:A【点睛】本题主要考查统计中的折线图和条形图的应用,还考查了建模解模的能力,属于基础题.7A【解析】利用正弦定理边角互化思想结合余弦定理可求得角的值,再利用正弦定理可求得的值.【详解】,由正弦定理得,整理得,由余弦定理得,.由正弦定理得.故

9、选:A.【点睛】本题考查利用正弦定理求值,涉及正弦定理边角互化思想以及余弦定理的应用,考查计算能力,属于中等题.8C【解析】求出集合的等价条件,利用交集的定义进行求解即可.【详解】解:,故选:C.【点睛】本题主要考查了对数的定义域与指数不等式的求解以及集合的基本运算,属于基础题.9A【解析】设圆的标准方程,利用待定系数法一一求出,从而求出圆的方程.【详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.10D【解析】根据线面平行和面

10、面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,由线面平行的判定定理,有,故B正确;选项C:若,故,所成的二面角为,则,故C正确;选项D,若,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.11A【解析】首先根据为上的减函数,列出不等式组,求得,所以当最小时,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果.【详解】由于为上的减函数,则有,可得,所以当最小时,函

11、数恰有两个零点等价于方程有两个实根,等价于函数与的图像有两个交点画出函数的简图如下,而函数恒过定点,数形结合可得的取值范围为故选:A.【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.12A【解析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解【详解】,得,故选:【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据三角函数定义表示出,由同角三角函数关系式结

12、合求得,而,展开后即可由余弦差角公式求得的值.【详解】点在单位圆上,设,由三角函数定义可知,因为,则,所以由同角三角函数关系式可得,所以 故答案为:.【点睛】本题考查了三角函数定义,同角三角函数关系式的应用,余弦差角公式的应用,属于中档题.14【解析】由解析式可分析两函数互为反函数,则图象关于对称,则点到的距离的最小值的二倍即为所求,利用导函数即可求得最值.【详解】由题,因为与互为反函数,则图象关于对称,设点为,则到直线的距离为,设,则,令,即,所以当时,即单调递减;当时,即单调递增,所以,则,所以的最小值为,故答案为:【点睛】本题考查反函数的性质的应用,考查利用导函数研究函数的最值问题.15

13、1【解析】由二项式定理及展开式通项公式得:,解得,令得:展开式中各项系数和,得解【详解】解:由的展开式的通项,令,得含有的项的系数是,解得,令得:展开式中各项系数和为,故答案为:1【点睛】本题考查了二项式定理及展开式通项公式,属于中档题169【解析】已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)根据焦点坐标和离心率,结合椭圆中的关系,即可求得的值,进而得椭圆

14、的标准方程.(2)设出直线的方程为,由题意可知为中点.联立直线与椭圆方程,由韦达定理表示出,由判别式可得;由平面向量的线性运算及数量积定义,化简可得,代入弦长公式化简;由中点坐标公式可得点的坐标,代入圆的方程,化简可得,代入数量积公式并化简,由换元法令,代入可得,再令及,结合函数单调性即可确定的取值范围,即确定的取值范围,因而可得的取值范围.【详解】(1)分别是椭圆的左焦点和右焦点,则,椭圆的离心率为则解得,所以,所以的方程为.(2)设直线的方程为,点满足,则为中点,点在圆上,设,联立直线与椭圆方程,化简可得,所以 则,化简可得,而 由弦长公式代入可得为中点,则 点在圆上,代入化简可得,所以令

15、,则,令,则令,则,所以, 因为在内单调递增,所以,即所以【点睛】本题考查了椭圆的标准方程求法,直线与椭圆的位置关系综合应用,由韦达定理研究参数间的关系,平面向量的线性运算与数量积运算,弦长公式的应用及换元法在求取值范围问题中的综合应用,计算量大,属于难题.18(1);(2).【解析】(1)根据离心率以及,即可列方程求得,则问题得解;(2)设直线方程为,联立椭圆方程,结合韦达定理,根据题意中转化出的,即可求得参数,则三角形面积得解.【详解】(1)设,由题意可得.因为是的中位线,且,所以,即,因为进而得,所以椭圆方程为(2)由已知得两边平方整理可得.当直线斜率为时,显然不成立.直线斜率不为时,设

16、直线的方程为,联立消去,得,所以,由得将代入整理得,展开得,整理得,所以.即为所求.【点睛】本题考查由离心率求椭圆的方程,以及椭圆三角形面积的求解,属综合中档题.19(1);(2).【解析】(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解【详解】解:(1),且,由正弦定理,锐角,(2),在中,由余弦定理得【点睛】本题主要考查了正弦定理和余弦定理的运用考查了学生对三角函数基础知识的综合运用20(1)证明见解析(2)(3)【解析】(1)取中点为,连接,由等边三角形性质可得,再由面面垂直的性质可得,根据平行直线的性质可得,进而求证;(2)以为原点,过

17、作的平行线,分别以,分别为轴,轴,轴建立空间直角坐标系,设,由点在棱上,可设,即可得到,再求得平面的法向量,进而利用数量积求解;(3)设,则,求得,即可求得点的坐标,再由与平面的法向量垂直,进而求解.【详解】(1)证明:取中点为,连接,因为是等边三角形,所以,因为且相交于,所以平面,所以,因为,所以,因为,在平面内,所以,所以.(2)以为原点,过作的平行线,分别以,分别为轴,轴,轴建立空间直角坐标系,设,则,因为在棱上,可设,所以,设平面的法向量为,因为,所以,即,令,可得,即,设直线与平面所成角为,所以,可知当时,取最大值.(3)设,则有,得,设,那么,所以,所以.因为,所以.又因为,所以,设平面的法向量为,则,即,可得,即 因为在平面内,所以,所以,所以,即,所以或者(舍),即.【点睛】本题考查面面垂直的证明,考查空间向量法求线面成角,考查运算能力与空间想象能力.21(1)(2)最大距离为【解析】(1)直接利用极坐标方程和参数方程的公式计算得到答案.(2)曲线的参数方程为,设,计算点到直线的距离公式得到答案.【详解】(1)由,得,则曲线的直角坐标方程为,即直线的直角坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论